| # |
| # Licensed to the Apache Software Foundation (ASF) under one or more |
| # contributor license agreements. See the NOTICE file distributed with |
| # this work for additional information regarding copyright ownership. |
| # The ASF licenses this file to You under the Apache License, Version 2.0 |
| # (the "License"); you may not use this file except in compliance with |
| # the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, software |
| # distributed under the License is distributed on an "AS IS" BASIS, |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| # See the License for the specific language governing permissions and |
| # limitations under the License. |
| # |
| import unittest |
| |
| import numpy as np |
| import pandas as pd |
| |
| from pyspark import pandas as ps |
| from pyspark.testing.pandasutils import PandasOnSparkTestCase |
| from pyspark.testing.sqlutils import SQLTestUtils |
| |
| |
| class FrameAnyAllMixin: |
| def test_all(self): |
| pdf = pd.DataFrame( |
| { |
| "col1": [False, False, False], |
| "col2": [True, False, False], |
| "col3": [0, 0, 1], |
| "col4": [0, 1, 2], |
| "col5": [False, False, None], |
| "col6": [True, False, None], |
| }, |
| index=np.random.rand(3), |
| ) |
| pdf.name = "x" |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq(psdf.all(), pdf.all()) |
| self.assert_eq(psdf.all(bool_only=True), pdf.all(bool_only=True)) |
| self.assert_eq(psdf.all(bool_only=False), pdf.all(bool_only=False)) |
| self.assert_eq(psdf[["col5"]].all(bool_only=True), pdf[["col5"]].all(bool_only=True)) |
| self.assert_eq(psdf[["col5"]].all(bool_only=False), pdf[["col5"]].all(bool_only=False)) |
| |
| columns = pd.MultiIndex.from_tuples( |
| [ |
| ("a", "col1"), |
| ("a", "col2"), |
| ("a", "col3"), |
| ("b", "col4"), |
| ("b", "col5"), |
| ("c", "col6"), |
| ] |
| ) |
| pdf.columns = columns |
| psdf.columns = columns |
| |
| self.assert_eq(psdf.all(), pdf.all()) |
| self.assert_eq(psdf.all(bool_only=True), pdf.all(bool_only=True)) |
| self.assert_eq(psdf.all(bool_only=False), pdf.all(bool_only=False)) |
| |
| columns.names = ["X", "Y"] |
| pdf.columns = columns |
| psdf.columns = columns |
| |
| self.assert_eq(psdf.all(), pdf.all()) |
| self.assert_eq(psdf.all(bool_only=True), pdf.all(bool_only=True)) |
| self.assert_eq(psdf.all(bool_only=False), pdf.all(bool_only=False)) |
| |
| with self.assertRaisesRegex( |
| NotImplementedError, 'axis should be either 0 or "index" currently.' |
| ): |
| psdf.all(axis=1) |
| |
| # Test skipna |
| pdf = pd.DataFrame({"A": [True, True], "B": [1, np.nan], "C": [True, None]}) |
| pdf.name = "x" |
| psdf = ps.from_pandas(pdf) |
| self.assert_eq(psdf[["A", "B"]].all(skipna=False), pdf[["A", "B"]].all(skipna=False)) |
| self.assert_eq(psdf[["A", "C"]].all(skipna=False), pdf[["A", "C"]].all(skipna=False)) |
| self.assert_eq(psdf[["B", "C"]].all(skipna=False), pdf[["B", "C"]].all(skipna=False)) |
| self.assert_eq(psdf.all(skipna=False), pdf.all(skipna=False)) |
| self.assert_eq(psdf.all(skipna=True), pdf.all(skipna=True)) |
| self.assert_eq(psdf.all(), pdf.all()) |
| self.assert_eq( |
| ps.DataFrame([np.nan]).all(skipna=False), |
| pd.DataFrame([np.nan]).all(skipna=False), |
| almost=True, |
| ) |
| self.assert_eq( |
| ps.DataFrame([None]).all(skipna=True), |
| pd.DataFrame([None]).all(skipna=True), |
| almost=True, |
| ) |
| |
| def test_any(self): |
| pdf = pd.DataFrame( |
| { |
| "col1": [False, False, False], |
| "col2": [True, False, False], |
| "col3": [0, 0, 1], |
| "col4": [0, 1, 2], |
| "col5": [False, False, None], |
| "col6": [True, False, None], |
| }, |
| index=np.random.rand(3), |
| ) |
| pdf.name = "x" |
| psdf = ps.from_pandas(pdf) |
| |
| self.assert_eq(psdf.any(), pdf.any()) |
| self.assert_eq(psdf.any(bool_only=True), pdf.any(bool_only=True)) |
| self.assert_eq(psdf.any(bool_only=False), pdf.any(bool_only=False)) |
| self.assert_eq(psdf[["col5"]].all(bool_only=True), pdf[["col5"]].all(bool_only=True)) |
| self.assert_eq(psdf[["col5"]].all(bool_only=False), pdf[["col5"]].all(bool_only=False)) |
| |
| columns = pd.MultiIndex.from_tuples( |
| [ |
| ("a", "col1"), |
| ("a", "col2"), |
| ("a", "col3"), |
| ("b", "col4"), |
| ("b", "col5"), |
| ("c", "col6"), |
| ] |
| ) |
| pdf.columns = columns |
| psdf.columns = columns |
| |
| self.assert_eq(psdf.any(), pdf.any()) |
| self.assert_eq(psdf.any(bool_only=True), pdf.any(bool_only=True)) |
| self.assert_eq(psdf.any(bool_only=False), pdf.any(bool_only=False)) |
| |
| columns.names = ["X", "Y"] |
| pdf.columns = columns |
| psdf.columns = columns |
| |
| self.assert_eq(psdf.any(), pdf.any()) |
| self.assert_eq(psdf.any(bool_only=True), pdf.any(bool_only=True)) |
| self.assert_eq(psdf.any(bool_only=False), pdf.any(bool_only=False)) |
| |
| with self.assertRaisesRegex( |
| NotImplementedError, 'axis should be either 0 or "index" currently.' |
| ): |
| psdf.any(axis=1) |
| |
| |
| class FrameAnyAllTests( |
| FrameAnyAllMixin, |
| PandasOnSparkTestCase, |
| SQLTestUtils, |
| ): |
| pass |
| |
| |
| if __name__ == "__main__": |
| from pyspark.pandas.tests.computation.test_any_all import * # noqa: F401 |
| |
| try: |
| import xmlrunner |
| |
| testRunner = xmlrunner.XMLTestRunner(output="target/test-reports", verbosity=2) |
| except ImportError: |
| testRunner = None |
| unittest.main(testRunner=testRunner, verbosity=2) |