blob: e67086c754cd6ff5d28b8b8c41e82d46f13d288d [file] [log] [blame]
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<title>pyspark.testing.pandasutils &#8212; PySpark 3.5.0 documentation</title>
<link href="../../../_static/styles/theme.css?digest=1999514e3f237ded88cf" rel="stylesheet">
<link href="../../../_static/styles/pydata-sphinx-theme.css?digest=1999514e3f237ded88cf" rel="stylesheet">
<link rel="stylesheet"
href="../../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin
href="../../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
<link rel="stylesheet" href="../../../_static/styles/pydata-sphinx-theme.css" type="text/css" />
<link rel="stylesheet" href="../../../_static/pygments.css" type="text/css" />
<link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" />
<link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf">
<script id="documentation_options" data-url_root="../../../" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/language_data.js"></script>
<script src="../../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script async="async" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/x-mathjax-config">MathJax.Hub.Config({"tex2jax": {"inlineMath": [["$", "$"], ["\\(", "\\)"]], "processEscapes": true, "ignoreClass": "document", "processClass": "math|output_area"}})</script>
<link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/testing/pandasutils.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="None">
<!-- Google Analytics -->
</head>
<body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
<div class="container-fluid" id="banner"></div>
<nav class="navbar navbar-light navbar-expand-lg bg-light fixed-top bd-navbar" id="navbar-main"><div class="container-xl">
<div id="navbar-start">
<a class="navbar-brand" href="../../../index.html">
<img src="../../../_static/spark-logo-reverse.png" class="logo" alt="logo">
</a>
</div>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbar-collapsible" aria-controls="navbar-collapsible" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar-collapsible" class="col-lg-9 collapse navbar-collapse">
<div id="navbar-center" class="mr-auto">
<div class="navbar-center-item">
<ul id="navbar-main-elements" class="navbar-nav">
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../index.html">
Overview
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../getting_started/index.html">
Getting Started
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../user_guide/index.html">
User Guides
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../reference/index.html">
API Reference
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../development/index.html">
Development
</a>
</li>
<li class="toctree-l1 nav-item">
<a class="reference internal nav-link" href="../../../migration_guide/index.html">
Migration Guides
</a>
</li>
</ul>
</div>
</div>
<div id="navbar-end">
<div class="navbar-end-item">
<ul id="navbar-icon-links" class="navbar-nav" aria-label="Icon Links">
</ul>
</div>
</div>
</div>
</div>
</nav>
<div class="container-xl">
<div class="row">
<!-- Only show if we have sidebars configured, else just a small margin -->
<div class="col-12 col-md-3 bd-sidebar">
<div class="sidebar-start-items"><form class="bd-search d-flex align-items-center" action="../../../search.html" method="get">
<i class="icon fas fa-search"></i>
<input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" >
</form><nav class="bd-links" id="bd-docs-nav" aria-label="Main navigation">
<div class="bd-toc-item active">
</div>
</nav>
</div>
<div class="sidebar-end-items">
</div>
</div>
<div class="d-none d-xl-block col-xl-2 bd-toc">
</div>
<main class="col-12 col-md-9 col-xl-7 py-md-5 pl-md-5 pr-md-4 bd-content" role="main">
<div>
<h1>Source code for pyspark.testing.pandasutils</h1><div class="highlight"><pre>
<span></span><span class="c1">#</span>
<span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span>
<span class="c1"># contributor license agreements. See the NOTICE file distributed with</span>
<span class="c1"># this work for additional information regarding copyright ownership.</span>
<span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span>
<span class="c1"># (the &quot;License&quot;); you may not use this file except in compliance with</span>
<span class="c1"># the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="c1">#</span>
<span class="kn">import</span> <span class="nn">functools</span>
<span class="kn">import</span> <span class="nn">shutil</span>
<span class="kn">import</span> <span class="nn">tempfile</span>
<span class="kn">import</span> <span class="nn">warnings</span>
<span class="kn">from</span> <span class="nn">contextlib</span> <span class="kn">import</span> <span class="n">contextmanager</span>
<span class="kn">from</span> <span class="nn">distutils.version</span> <span class="kn">import</span> <span class="n">LooseVersion</span>
<span class="kn">import</span> <span class="nn">decimal</span>
<span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Any</span><span class="p">,</span> <span class="n">Union</span><span class="p">,</span> <span class="n">TYPE_CHECKING</span>
<span class="kn">import</span> <span class="nn">pyspark.pandas</span> <span class="k">as</span> <span class="nn">ps</span>
<span class="kn">from</span> <span class="nn">pyspark.pandas.frame</span> <span class="kn">import</span> <span class="n">DataFrame</span>
<span class="kn">from</span> <span class="nn">pyspark.pandas.indexes</span> <span class="kn">import</span> <span class="n">Index</span>
<span class="kn">from</span> <span class="nn">pyspark.pandas.series</span> <span class="kn">import</span> <span class="n">Series</span>
<span class="kn">from</span> <span class="nn">pyspark.pandas.utils</span> <span class="kn">import</span> <span class="n">SPARK_CONF_ARROW_ENABLED</span>
<span class="kn">from</span> <span class="nn">pyspark.testing.sqlutils</span> <span class="kn">import</span> <span class="n">ReusedSQLTestCase</span>
<span class="kn">from</span> <span class="nn">pyspark.errors</span> <span class="kn">import</span> <span class="n">PySparkAssertionError</span>
<span class="n">tabulate_requirement_message</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">try</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">tabulate</span> <span class="kn">import</span> <span class="n">tabulate</span>
<span class="k">except</span> <span class="ne">ImportError</span> <span class="k">as</span> <span class="n">e</span><span class="p">:</span>
<span class="c1"># If tabulate requirement is not satisfied, skip related tests.</span>
<span class="n">tabulate_requirement_message</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="n">e</span><span class="p">)</span>
<span class="n">have_tabulate</span> <span class="o">=</span> <span class="n">tabulate_requirement_message</span> <span class="ow">is</span> <span class="kc">None</span>
<span class="n">matplotlib_requirement_message</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">try</span><span class="p">:</span>
<span class="kn">import</span> <span class="nn">matplotlib</span>
<span class="k">except</span> <span class="ne">ImportError</span> <span class="k">as</span> <span class="n">e</span><span class="p">:</span>
<span class="c1"># If matplotlib requirement is not satisfied, skip related tests.</span>
<span class="n">matplotlib_requirement_message</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="n">e</span><span class="p">)</span>
<span class="n">have_matplotlib</span> <span class="o">=</span> <span class="n">matplotlib_requirement_message</span> <span class="ow">is</span> <span class="kc">None</span>
<span class="n">plotly_requirement_message</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">try</span><span class="p">:</span>
<span class="kn">import</span> <span class="nn">plotly</span>
<span class="k">except</span> <span class="ne">ImportError</span> <span class="k">as</span> <span class="n">e</span><span class="p">:</span>
<span class="c1"># If plotly requirement is not satisfied, skip related tests.</span>
<span class="n">plotly_requirement_message</span> <span class="o">=</span> <span class="nb">str</span><span class="p">(</span><span class="n">e</span><span class="p">)</span>
<span class="n">have_plotly</span> <span class="o">=</span> <span class="n">plotly_requirement_message</span> <span class="ow">is</span> <span class="kc">None</span>
<span class="k">try</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">pyspark.sql.pandas.utils</span> <span class="kn">import</span> <span class="n">require_minimum_pandas_version</span>
<span class="n">require_minimum_pandas_version</span><span class="p">()</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="k">except</span> <span class="ne">ImportError</span><span class="p">:</span>
<span class="k">pass</span>
<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;assertPandasOnSparkEqual&quot;</span><span class="p">]</span>
<span class="k">def</span> <span class="nf">_assert_pandas_equal</span><span class="p">(</span>
<span class="n">left</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="p">],</span>
<span class="n">right</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="p">],</span>
<span class="n">checkExact</span><span class="p">:</span> <span class="nb">bool</span><span class="p">,</span>
<span class="p">):</span>
<span class="kn">from</span> <span class="nn">pandas.core.dtypes.common</span> <span class="kn">import</span> <span class="n">is_numeric_dtype</span>
<span class="kn">from</span> <span class="nn">pandas.testing</span> <span class="kn">import</span> <span class="n">assert_frame_equal</span><span class="p">,</span> <span class="n">assert_index_equal</span><span class="p">,</span> <span class="n">assert_series_equal</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">):</span>
<span class="k">try</span><span class="p">:</span>
<span class="k">if</span> <span class="n">LooseVersion</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">__version__</span><span class="p">)</span> <span class="o">&gt;=</span> <span class="n">LooseVersion</span><span class="p">(</span><span class="s2">&quot;1.1&quot;</span><span class="p">):</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">(</span><span class="n">check_freq</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">()</span>
<span class="k">if</span> <span class="n">LooseVersion</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">__version__</span><span class="p">)</span> <span class="o">&lt;</span> <span class="n">LooseVersion</span><span class="p">(</span><span class="s2">&quot;1.1.1&quot;</span><span class="p">):</span>
<span class="c1"># Due to https://github.com/pandas-dev/pandas/issues/35446</span>
<span class="n">checkExact</span> <span class="o">=</span> <span class="p">(</span>
<span class="n">checkExact</span>
<span class="ow">and</span> <span class="nb">all</span><span class="p">([</span><span class="n">is_numeric_dtype</span><span class="p">(</span><span class="n">dtype</span><span class="p">)</span> <span class="k">for</span> <span class="n">dtype</span> <span class="ow">in</span> <span class="n">left</span><span class="o">.</span><span class="n">dtypes</span><span class="p">])</span>
<span class="ow">and</span> <span class="nb">all</span><span class="p">([</span><span class="n">is_numeric_dtype</span><span class="p">(</span><span class="n">dtype</span><span class="p">)</span> <span class="k">for</span> <span class="n">dtype</span> <span class="ow">in</span> <span class="n">right</span><span class="o">.</span><span class="n">dtypes</span><span class="p">])</span>
<span class="p">)</span>
<span class="n">assert_frame_equal</span><span class="p">(</span>
<span class="n">left</span><span class="p">,</span>
<span class="n">right</span><span class="p">,</span>
<span class="n">check_index_type</span><span class="o">=</span><span class="p">(</span><span class="s2">&quot;equiv&quot;</span> <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">index</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span> <span class="k">else</span> <span class="kc">False</span><span class="p">),</span>
<span class="n">check_column_type</span><span class="o">=</span><span class="p">(</span><span class="s2">&quot;equiv&quot;</span> <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">columns</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span> <span class="k">else</span> <span class="kc">False</span><span class="p">),</span>
<span class="n">check_exact</span><span class="o">=</span><span class="n">checkExact</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">except</span> <span class="ne">AssertionError</span><span class="p">:</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;DIFFERENT_PANDAS_DATAFRAME&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;left&quot;</span><span class="p">:</span> <span class="n">left</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;left_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dtypes</span><span class="p">),</span>
<span class="s2">&quot;right&quot;</span><span class="p">:</span> <span class="n">right</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;right_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">right</span><span class="o">.</span><span class="n">dtypes</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">):</span>
<span class="k">try</span><span class="p">:</span>
<span class="k">if</span> <span class="n">LooseVersion</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">__version__</span><span class="p">)</span> <span class="o">&gt;=</span> <span class="n">LooseVersion</span><span class="p">(</span><span class="s2">&quot;1.1&quot;</span><span class="p">):</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">(</span><span class="n">check_freq</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">kwargs</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">()</span>
<span class="k">if</span> <span class="n">LooseVersion</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">__version__</span><span class="p">)</span> <span class="o">&lt;</span> <span class="n">LooseVersion</span><span class="p">(</span><span class="s2">&quot;1.1.1&quot;</span><span class="p">):</span>
<span class="c1"># Due to https://github.com/pandas-dev/pandas/issues/35446</span>
<span class="n">checkExact</span> <span class="o">=</span> <span class="p">(</span>
<span class="n">checkExact</span> <span class="ow">and</span> <span class="n">is_numeric_dtype</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span> <span class="ow">and</span> <span class="n">is_numeric_dtype</span><span class="p">(</span><span class="n">right</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="p">)</span>
<span class="n">assert_series_equal</span><span class="p">(</span>
<span class="n">left</span><span class="p">,</span>
<span class="n">right</span><span class="p">,</span>
<span class="n">check_index_type</span><span class="o">=</span><span class="p">(</span><span class="s2">&quot;equiv&quot;</span> <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">index</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span> <span class="k">else</span> <span class="kc">False</span><span class="p">),</span>
<span class="n">check_exact</span><span class="o">=</span><span class="n">checkExact</span><span class="p">,</span>
<span class="o">**</span><span class="n">kwargs</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">except</span> <span class="ne">AssertionError</span><span class="p">:</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;DIFFERENT_PANDAS_SERIES&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;left&quot;</span><span class="p">:</span> <span class="n">left</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;left_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="s2">&quot;right&quot;</span><span class="p">:</span> <span class="n">right</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;right_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">right</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="p">):</span>
<span class="k">try</span><span class="p">:</span>
<span class="k">if</span> <span class="n">LooseVersion</span><span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">__version__</span><span class="p">)</span> <span class="o">&lt;</span> <span class="n">LooseVersion</span><span class="p">(</span><span class="s2">&quot;1.1.1&quot;</span><span class="p">):</span>
<span class="c1"># Due to https://github.com/pandas-dev/pandas/issues/35446</span>
<span class="n">checkExact</span> <span class="o">=</span> <span class="p">(</span>
<span class="n">checkExact</span> <span class="ow">and</span> <span class="n">is_numeric_dtype</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span> <span class="ow">and</span> <span class="n">is_numeric_dtype</span><span class="p">(</span><span class="n">right</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
<span class="p">)</span>
<span class="n">assert_index_equal</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">right</span><span class="p">,</span> <span class="n">check_exact</span><span class="o">=</span><span class="n">checkExact</span><span class="p">)</span>
<span class="k">except</span> <span class="ne">AssertionError</span><span class="p">:</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;DIFFERENT_PANDAS_INDEX&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;left&quot;</span><span class="p">:</span> <span class="n">left</span><span class="p">,</span>
<span class="s2">&quot;left_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="s2">&quot;right&quot;</span><span class="p">:</span> <span class="n">right</span><span class="p">,</span>
<span class="s2">&quot;right_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">right</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;Unexpected values: (</span><span class="si">%s</span><span class="s2">, </span><span class="si">%s</span><span class="s2">)&quot;</span> <span class="o">%</span> <span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">right</span><span class="p">))</span>
<span class="k">def</span> <span class="nf">_assert_pandas_almost_equal</span><span class="p">(</span>
<span class="n">left</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="p">],</span>
<span class="n">right</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="p">],</span>
<span class="n">rtol</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-5</span><span class="p">,</span>
<span class="n">atol</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-8</span><span class="p">,</span>
<span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> This function checks if given pandas objects approximately same,</span>
<span class="sd"> which means the conditions below:</span>
<span class="sd"> - Both objects are nullable</span>
<span class="sd"> - Compare decimals and floats, where two values a and b are approximately equal</span>
<span class="sd"> if they satisfy the following formula:</span>
<span class="sd"> absolute(a - b) &lt;= (atol + rtol * absolute(b))</span>
<span class="sd"> where rtol=1e-5 and atol=1e-8 by default</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="nf">compare_vals_approx</span><span class="p">(</span><span class="n">val1</span><span class="p">,</span> <span class="n">val2</span><span class="p">):</span>
<span class="c1"># compare vals for approximate equality</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">lval</span><span class="p">,</span> <span class="p">(</span><span class="nb">float</span><span class="p">,</span> <span class="n">decimal</span><span class="o">.</span><span class="n">Decimal</span><span class="p">))</span> <span class="ow">or</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">rval</span><span class="p">,</span> <span class="p">(</span><span class="nb">float</span><span class="p">,</span> <span class="n">decimal</span><span class="o">.</span><span class="n">Decimal</span><span class="p">)):</span>
<span class="k">if</span> <span class="nb">abs</span><span class="p">(</span><span class="nb">float</span><span class="p">(</span><span class="n">lval</span><span class="p">)</span> <span class="o">-</span> <span class="nb">float</span><span class="p">(</span><span class="n">rval</span><span class="p">))</span> <span class="o">&gt;</span> <span class="p">(</span><span class="n">atol</span> <span class="o">+</span> <span class="n">rtol</span> <span class="o">*</span> <span class="nb">abs</span><span class="p">(</span><span class="nb">float</span><span class="p">(</span><span class="n">rval</span><span class="p">))):</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">elif</span> <span class="n">val1</span> <span class="o">!=</span> <span class="n">val2</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">return</span> <span class="kc">True</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">):</span>
<span class="k">if</span> <span class="n">left</span><span class="o">.</span><span class="n">shape</span> <span class="o">!=</span> <span class="n">right</span><span class="o">.</span><span class="n">shape</span><span class="p">:</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;DIFFERENT_PANDAS_DATAFRAME&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;left&quot;</span><span class="p">:</span> <span class="n">left</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;left_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dtypes</span><span class="p">),</span>
<span class="s2">&quot;right&quot;</span><span class="p">:</span> <span class="n">right</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;right_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">right</span><span class="o">.</span><span class="n">dtypes</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<span class="k">for</span> <span class="n">lcol</span><span class="p">,</span> <span class="n">rcol</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">columns</span><span class="p">,</span> <span class="n">right</span><span class="o">.</span><span class="n">columns</span><span class="p">):</span>
<span class="k">if</span> <span class="n">lcol</span> <span class="o">!=</span> <span class="n">rcol</span><span class="p">:</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;DIFFERENT_PANDAS_DATAFRAME&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;left&quot;</span><span class="p">:</span> <span class="n">left</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;left_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dtypes</span><span class="p">),</span>
<span class="s2">&quot;right&quot;</span><span class="p">:</span> <span class="n">right</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;right_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">right</span><span class="o">.</span><span class="n">dtypes</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<span class="k">for</span> <span class="n">lnull</span><span class="p">,</span> <span class="n">rnull</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">left</span><span class="p">[</span><span class="n">lcol</span><span class="p">]</span><span class="o">.</span><span class="n">isnull</span><span class="p">(),</span> <span class="n">right</span><span class="p">[</span><span class="n">rcol</span><span class="p">]</span><span class="o">.</span><span class="n">isnull</span><span class="p">()):</span>
<span class="k">if</span> <span class="n">lnull</span> <span class="o">!=</span> <span class="n">rnull</span><span class="p">:</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;DIFFERENT_PANDAS_DATAFRAME&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;left&quot;</span><span class="p">:</span> <span class="n">left</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;left_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dtypes</span><span class="p">),</span>
<span class="s2">&quot;right&quot;</span><span class="p">:</span> <span class="n">right</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;right_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">right</span><span class="o">.</span><span class="n">dtypes</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<span class="k">for</span> <span class="n">lval</span><span class="p">,</span> <span class="n">rval</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">left</span><span class="p">[</span><span class="n">lcol</span><span class="p">]</span><span class="o">.</span><span class="n">dropna</span><span class="p">(),</span> <span class="n">right</span><span class="p">[</span><span class="n">rcol</span><span class="p">]</span><span class="o">.</span><span class="n">dropna</span><span class="p">()):</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">compare_vals_approx</span><span class="p">(</span><span class="n">lval</span><span class="p">,</span> <span class="n">rval</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;DIFFERENT_PANDAS_DATAFRAME&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;left&quot;</span><span class="p">:</span> <span class="n">left</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;left_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dtypes</span><span class="p">),</span>
<span class="s2">&quot;right&quot;</span><span class="p">:</span> <span class="n">right</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;right_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">right</span><span class="o">.</span><span class="n">dtypes</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">left</span><span class="o">.</span><span class="n">columns</span><span class="o">.</span><span class="n">names</span> <span class="o">!=</span> <span class="n">right</span><span class="o">.</span><span class="n">columns</span><span class="o">.</span><span class="n">names</span><span class="p">:</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;DIFFERENT_PANDAS_DATAFRAME&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;left&quot;</span><span class="p">:</span> <span class="n">left</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;left_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dtypes</span><span class="p">),</span>
<span class="s2">&quot;right&quot;</span><span class="p">:</span> <span class="n">right</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;right_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">right</span><span class="o">.</span><span class="n">dtypes</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">):</span>
<span class="k">if</span> <span class="n">left</span><span class="o">.</span><span class="n">name</span> <span class="o">!=</span> <span class="n">right</span><span class="o">.</span><span class="n">name</span> <span class="ow">or</span> <span class="nb">len</span><span class="p">(</span><span class="n">left</span><span class="p">)</span> <span class="o">!=</span> <span class="nb">len</span><span class="p">(</span><span class="n">right</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;DIFFERENT_PANDAS_SERIES&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;left&quot;</span><span class="p">:</span> <span class="n">left</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;left_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="s2">&quot;right&quot;</span><span class="p">:</span> <span class="n">right</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;right_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">right</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<span class="k">for</span> <span class="n">lnull</span><span class="p">,</span> <span class="n">rnull</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">isnull</span><span class="p">(),</span> <span class="n">right</span><span class="o">.</span><span class="n">isnull</span><span class="p">()):</span>
<span class="k">if</span> <span class="n">lnull</span> <span class="o">!=</span> <span class="n">rnull</span><span class="p">:</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;DIFFERENT_PANDAS_SERIES&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;left&quot;</span><span class="p">:</span> <span class="n">left</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;left_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="s2">&quot;right&quot;</span><span class="p">:</span> <span class="n">right</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;right_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">right</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<span class="k">for</span> <span class="n">lval</span><span class="p">,</span> <span class="n">rval</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dropna</span><span class="p">(),</span> <span class="n">right</span><span class="o">.</span><span class="n">dropna</span><span class="p">()):</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">compare_vals_approx</span><span class="p">(</span><span class="n">lval</span><span class="p">,</span> <span class="n">rval</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;DIFFERENT_PANDAS_SERIES&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;left&quot;</span><span class="p">:</span> <span class="n">left</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;left_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="s2">&quot;right&quot;</span><span class="p">:</span> <span class="n">right</span><span class="o">.</span><span class="n">to_string</span><span class="p">(),</span>
<span class="s2">&quot;right_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">right</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">MultiIndex</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">left</span><span class="p">)</span> <span class="o">!=</span> <span class="nb">len</span><span class="p">(</span><span class="n">right</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;DIFFERENT_PANDAS_MULTIINDEX&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;left&quot;</span><span class="p">:</span> <span class="n">left</span><span class="p">,</span>
<span class="s2">&quot;left_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="s2">&quot;right&quot;</span><span class="p">:</span> <span class="n">right</span><span class="p">,</span>
<span class="s2">&quot;right_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">right</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<span class="k">for</span> <span class="n">lval</span><span class="p">,</span> <span class="n">rval</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">right</span><span class="p">):</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">compare_vals_approx</span><span class="p">(</span><span class="n">lval</span><span class="p">,</span> <span class="n">rval</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;DIFFERENT_PANDAS_MULTIINDEX&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;left&quot;</span><span class="p">:</span> <span class="n">left</span><span class="p">,</span>
<span class="s2">&quot;left_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="s2">&quot;right&quot;</span><span class="p">:</span> <span class="n">right</span><span class="p">,</span>
<span class="s2">&quot;right_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">right</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">left</span><span class="p">)</span> <span class="o">!=</span> <span class="nb">len</span><span class="p">(</span><span class="n">right</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;DIFFERENT_PANDAS_INDEX&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;left&quot;</span><span class="p">:</span> <span class="n">left</span><span class="p">,</span>
<span class="s2">&quot;left_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="s2">&quot;right&quot;</span><span class="p">:</span> <span class="n">right</span><span class="p">,</span>
<span class="s2">&quot;right_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">right</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<span class="k">for</span> <span class="n">lnull</span><span class="p">,</span> <span class="n">rnull</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">isnull</span><span class="p">(),</span> <span class="n">right</span><span class="o">.</span><span class="n">isnull</span><span class="p">()):</span>
<span class="k">if</span> <span class="n">lnull</span> <span class="o">!=</span> <span class="n">rnull</span><span class="p">:</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;DIFFERENT_PANDAS_INDEX&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;left&quot;</span><span class="p">:</span> <span class="n">left</span><span class="p">,</span>
<span class="s2">&quot;left_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="s2">&quot;right&quot;</span><span class="p">:</span> <span class="n">right</span><span class="p">,</span>
<span class="s2">&quot;right_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">right</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<span class="k">for</span> <span class="n">lval</span><span class="p">,</span> <span class="n">rval</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dropna</span><span class="p">(),</span> <span class="n">right</span><span class="o">.</span><span class="n">dropna</span><span class="p">()):</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">compare_vals_approx</span><span class="p">(</span><span class="n">lval</span><span class="p">,</span> <span class="n">rval</span><span class="p">):</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;DIFFERENT_PANDAS_INDEX&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;left&quot;</span><span class="p">:</span> <span class="n">left</span><span class="p">,</span>
<span class="s2">&quot;left_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">left</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="s2">&quot;right&quot;</span><span class="p">:</span> <span class="n">right</span><span class="p">,</span>
<span class="s2">&quot;right_dtype&quot;</span><span class="p">:</span> <span class="nb">str</span><span class="p">(</span><span class="n">right</span><span class="o">.</span><span class="n">dtype</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="p">)):</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;INVALID_TYPE_DF_EQUALITY_ARG&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;expected_type&quot;</span><span class="p">:</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">, &quot;</span>
<span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">, &quot;</span>
<span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">, &quot;</span><span class="p">,</span>
<span class="s2">&quot;arg_name&quot;</span><span class="p">:</span> <span class="s2">&quot;left&quot;</span><span class="p">,</span>
<span class="s2">&quot;actual_type&quot;</span><span class="p">:</span> <span class="nb">type</span><span class="p">(</span><span class="n">left</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<span class="k">elif</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">right</span><span class="p">,</span> <span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="p">)):</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;INVALID_TYPE_DF_EQUALITY_ARG&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;expected_type&quot;</span><span class="p">:</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">, &quot;</span>
<span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">, &quot;</span>
<span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">, &quot;</span><span class="p">,</span>
<span class="s2">&quot;arg_name&quot;</span><span class="p">:</span> <span class="s2">&quot;right&quot;</span><span class="p">,</span>
<span class="s2">&quot;actual_type&quot;</span><span class="p">:</span> <span class="nb">type</span><span class="p">(</span><span class="n">right</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<div class="viewcode-block" id="assertPandasOnSparkEqual"><a class="viewcode-back" href="../../../reference/api/pyspark.testing.assertPandasOnSparkEqual.html#pyspark.testing.assertPandasOnSparkEqual">[docs]</a><span class="k">def</span> <span class="nf">assertPandasOnSparkEqual</span><span class="p">(</span>
<span class="n">actual</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">Series</span><span class="p">,</span> <span class="n">Index</span><span class="p">],</span>
<span class="n">expected</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">Series</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">,</span> <span class="n">Index</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="p">],</span>
<span class="n">checkExact</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="n">almost</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">rtol</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-5</span><span class="p">,</span>
<span class="n">atol</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-8</span><span class="p">,</span>
<span class="n">checkRowOrder</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="p">):</span>
<span class="w"> </span><span class="sa">r</span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> A util function to assert equality between actual (pandas-on-Spark object) and expected</span>
<span class="sd"> (pandas-on-Spark or pandas object).</span>
<span class="sd"> .. versionadded:: 3.5.0</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> actual: pandas-on-Spark DataFrame, Series, or Index</span>
<span class="sd"> The object that is being compared or tested.</span>
<span class="sd"> expected: pandas-on-Spark or pandas DataFrame, Series, or Index</span>
<span class="sd"> The expected object, for comparison with the actual result.</span>
<span class="sd"> checkExact: bool, optional</span>
<span class="sd"> A flag indicating whether to compare exact equality.</span>
<span class="sd"> If set to &#39;True&#39; (default), the data is compared exactly.</span>
<span class="sd"> If set to &#39;False&#39;, the data is compared less precisely, following pandas assert_frame_equal</span>
<span class="sd"> approximate comparison (see documentation for more details).</span>
<span class="sd"> almost: bool, optional</span>
<span class="sd"> A flag indicating whether to use unittest `assertAlmostEqual` or `assertEqual`.</span>
<span class="sd"> If set to &#39;True&#39;, the comparison is delegated to `unittest`&#39;s `assertAlmostEqual`</span>
<span class="sd"> (see documentation for more details).</span>
<span class="sd"> If set to &#39;False&#39; (default), the data is compared exactly with `unittest`&#39;s</span>
<span class="sd"> `assertEqual`.</span>
<span class="sd"> rtol : float, optional</span>
<span class="sd"> The relative tolerance, used in asserting almost equality for float values in actual</span>
<span class="sd"> and expected. Set to 1e-5 by default. (See Notes)</span>
<span class="sd"> atol : float, optional</span>
<span class="sd"> The absolute tolerance, used in asserting almost equality for float values in actual</span>
<span class="sd"> and expected. Set to 1e-8 by default. (See Notes)</span>
<span class="sd"> checkRowOrder : bool, optional</span>
<span class="sd"> A flag indicating whether the order of rows should be considered in the comparison.</span>
<span class="sd"> If set to `False`, the row order is not taken into account.</span>
<span class="sd"> If set to `True` (default), the order of rows will be checked during comparison.</span>
<span class="sd"> (See Notes)</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> For `checkRowOrder`, note that pandas-on-Spark DataFrame ordering is non-deterministic, unless</span>
<span class="sd"> explicitly sorted.</span>
<span class="sd"> When `almost` is set to True, approximate equality will be asserted, where two values</span>
<span class="sd"> a and b are approximately equal if they satisfy the following formula:</span>
<span class="sd"> ``absolute(a - b) &lt;= (atol + rtol * absolute(b))``.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import pyspark.pandas as ps</span>
<span class="sd"> &gt;&gt;&gt; psdf1 = ps.DataFrame({&#39;a&#39;: [1, 2, 3], &#39;b&#39;: [4, 5, 6], &#39;c&#39;: [7, 8, 9]})</span>
<span class="sd"> &gt;&gt;&gt; psdf2 = ps.DataFrame({&#39;a&#39;: [1, 2, 3], &#39;b&#39;: [4, 5, 6], &#39;c&#39;: [7, 8, 9]})</span>
<span class="sd"> &gt;&gt;&gt; assertPandasOnSparkEqual(psdf1, psdf2) # pass, ps.DataFrames are equal</span>
<span class="sd"> &gt;&gt;&gt; s1 = ps.Series([212.32, 100.0001])</span>
<span class="sd"> &gt;&gt;&gt; s2 = ps.Series([212.32, 100.0])</span>
<span class="sd"> &gt;&gt;&gt; assertPandasOnSparkEqual(s1, s2, checkExact=False) # pass, ps.Series are approx equal</span>
<span class="sd"> &gt;&gt;&gt; s1 = ps.Index([212.300001, 100.000])</span>
<span class="sd"> &gt;&gt;&gt; s2 = ps.Index([212.3, 100.0001])</span>
<span class="sd"> &gt;&gt;&gt; assertPandasOnSparkEqual(s1, s2, almost=True) # pass, ps.Index obj are almost equal</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">if</span> <span class="n">actual</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">expected</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">True</span>
<span class="k">elif</span> <span class="n">actual</span> <span class="ow">is</span> <span class="kc">None</span> <span class="ow">or</span> <span class="n">expected</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="kc">False</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">actual</span><span class="p">,</span> <span class="p">(</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">Series</span><span class="p">,</span> <span class="n">Index</span><span class="p">)):</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;INVALID_TYPE_DF_EQUALITY_ARG&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;expected_type&quot;</span><span class="p">:</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">DataFrame</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">, </span><span class="si">{</span><span class="n">Series</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">, </span><span class="si">{</span><span class="n">Index</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">,</span>
<span class="s2">&quot;arg_name&quot;</span><span class="p">:</span> <span class="s2">&quot;actual&quot;</span><span class="p">,</span>
<span class="s2">&quot;actual_type&quot;</span><span class="p">:</span> <span class="nb">type</span><span class="p">(</span><span class="n">actual</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<span class="k">elif</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">expected</span><span class="p">,</span> <span class="p">(</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">Series</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">,</span> <span class="n">Index</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="p">)):</span>
<span class="k">raise</span> <span class="n">PySparkAssertionError</span><span class="p">(</span>
<span class="n">error_class</span><span class="o">=</span><span class="s2">&quot;INVALID_TYPE_DF_EQUALITY_ARG&quot;</span><span class="p">,</span>
<span class="n">message_parameters</span><span class="o">=</span><span class="p">{</span>
<span class="s2">&quot;expected_type&quot;</span><span class="p">:</span> <span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">DataFrame</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">, &quot;</span>
<span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">, &quot;</span>
<span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">Series</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">, &quot;</span>
<span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">, &quot;</span>
<span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">Index</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">&quot;</span>
<span class="sa">f</span><span class="s2">&quot;</span><span class="si">{</span><span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="o">.</span><span class="vm">__name__</span><span class="si">}</span><span class="s2">, &quot;</span><span class="p">,</span>
<span class="s2">&quot;arg_name&quot;</span><span class="p">:</span> <span class="s2">&quot;expected&quot;</span><span class="p">,</span>
<span class="s2">&quot;actual_type&quot;</span><span class="p">:</span> <span class="nb">type</span><span class="p">(</span><span class="n">expected</span><span class="p">),</span>
<span class="p">},</span>
<span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">actual</span><span class="p">,</span> <span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">)):</span>
<span class="n">actual</span> <span class="o">=</span> <span class="n">actual</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
<span class="k">if</span> <span class="ow">not</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">expected</span><span class="p">,</span> <span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">)):</span>
<span class="n">expected</span> <span class="o">=</span> <span class="n">expected</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
<span class="k">if</span> <span class="ow">not</span> <span class="n">checkRowOrder</span><span class="p">:</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">actual</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">len</span><span class="p">(</span><span class="n">actual</span><span class="o">.</span><span class="n">columns</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">actual</span> <span class="o">=</span> <span class="n">actual</span><span class="o">.</span><span class="n">sort_values</span><span class="p">(</span><span class="n">by</span><span class="o">=</span><span class="n">actual</span><span class="o">.</span><span class="n">columns</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">ignore_index</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">expected</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">len</span><span class="p">(</span><span class="n">expected</span><span class="o">.</span><span class="n">columns</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
<span class="n">expected</span> <span class="o">=</span> <span class="n">expected</span><span class="o">.</span><span class="n">sort_values</span><span class="p">(</span><span class="n">by</span><span class="o">=</span><span class="n">expected</span><span class="o">.</span><span class="n">columns</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">ignore_index</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="k">if</span> <span class="n">almost</span><span class="p">:</span>
<span class="n">_assert_pandas_almost_equal</span><span class="p">(</span><span class="n">actual</span><span class="p">,</span> <span class="n">expected</span><span class="p">,</span> <span class="n">rtol</span><span class="o">=</span><span class="n">rtol</span><span class="p">,</span> <span class="n">atol</span><span class="o">=</span><span class="n">atol</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">_assert_pandas_equal</span><span class="p">(</span><span class="n">actual</span><span class="p">,</span> <span class="n">expected</span><span class="p">,</span> <span class="n">checkExact</span><span class="o">=</span><span class="n">checkExact</span><span class="p">)</span></div>
<span class="k">class</span> <span class="nc">PandasOnSparkTestUtils</span><span class="p">:</span>
<span class="k">def</span> <span class="nf">convert_str_to_lambda</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">func</span><span class="p">:</span> <span class="nb">str</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> This function converts `func` str to lambda call</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="nb">getattr</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">func</span><span class="p">)()</span>
<span class="k">def</span> <span class="nf">assertPandasEqual</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">left</span><span class="p">:</span> <span class="n">Any</span><span class="p">,</span> <span class="n">right</span><span class="p">:</span> <span class="n">Any</span><span class="p">,</span> <span class="n">check_exact</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">):</span>
<span class="n">_assert_pandas_equal</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">right</span><span class="p">,</span> <span class="n">check_exact</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">assertPandasAlmostEqual</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">left</span><span class="p">:</span> <span class="n">Any</span><span class="p">,</span>
<span class="n">right</span><span class="p">:</span> <span class="n">Any</span><span class="p">,</span>
<span class="n">rtol</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-5</span><span class="p">,</span>
<span class="n">atol</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-8</span><span class="p">,</span>
<span class="p">):</span>
<span class="n">_assert_pandas_almost_equal</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">right</span><span class="p">,</span> <span class="n">rtol</span><span class="o">=</span><span class="n">rtol</span><span class="p">,</span> <span class="n">atol</span><span class="o">=</span><span class="n">atol</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">assert_eq</span><span class="p">(</span>
<span class="bp">self</span><span class="p">,</span>
<span class="n">left</span><span class="p">:</span> <span class="n">Any</span><span class="p">,</span>
<span class="n">right</span><span class="p">:</span> <span class="n">Any</span><span class="p">,</span>
<span class="n">check_exact</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="n">almost</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span>
<span class="n">rtol</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-5</span><span class="p">,</span>
<span class="n">atol</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-8</span><span class="p">,</span>
<span class="n">check_row_order</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span>
<span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Asserts if two arbitrary objects are equal or not. If given objects are Koalas DataFrame</span>
<span class="sd"> or Series, they are converted into pandas&#39; and compared.</span>
<span class="sd"> :param left: object to compare</span>
<span class="sd"> :param right: object to compare</span>
<span class="sd"> :param check_exact: if this is False, the comparison is done less precisely.</span>
<span class="sd"> :param almost: if this is enabled, the comparison asserts approximate equality</span>
<span class="sd"> for float and decimal values, where two values a and b are approximately equal</span>
<span class="sd"> if they satisfy the following formula:</span>
<span class="sd"> absolute(a - b) &lt;= (atol + rtol * absolute(b))</span>
<span class="sd"> :param rtol: The relative tolerance, used in asserting approximate equality for</span>
<span class="sd"> float values. Set to 1e-5 by default.</span>
<span class="sd"> :param atol: The absolute tolerance, used in asserting approximate equality for</span>
<span class="sd"> float values in actual and expected. Set to 1e-8 by default.</span>
<span class="sd"> :param check_row_order: A flag indicating whether the order of rows should be considered</span>
<span class="sd"> in the comparison. If set to False, row order will be ignored.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span>
<span class="kn">from</span> <span class="nn">pandas.api.types</span> <span class="kn">import</span> <span class="n">is_list_like</span>
<span class="c1"># for pandas-on-Spark DataFrames, allow choice to ignore row order</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="p">(</span><span class="n">ps</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">ps</span><span class="o">.</span><span class="n">Series</span><span class="p">,</span> <span class="n">ps</span><span class="o">.</span><span class="n">Index</span><span class="p">)):</span>
<span class="k">return</span> <span class="n">assertPandasOnSparkEqual</span><span class="p">(</span>
<span class="n">left</span><span class="p">,</span>
<span class="n">right</span><span class="p">,</span>
<span class="n">checkExact</span><span class="o">=</span><span class="n">check_exact</span><span class="p">,</span>
<span class="n">almost</span><span class="o">=</span><span class="n">almost</span><span class="p">,</span>
<span class="n">rtol</span><span class="o">=</span><span class="n">rtol</span><span class="p">,</span>
<span class="n">atol</span><span class="o">=</span><span class="n">atol</span><span class="p">,</span>
<span class="n">checkRowOrder</span><span class="o">=</span><span class="n">check_row_order</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">lobj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_to_pandas</span><span class="p">(</span><span class="n">left</span><span class="p">)</span>
<span class="n">robj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_to_pandas</span><span class="p">(</span><span class="n">right</span><span class="p">)</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">lobj</span><span class="p">,</span> <span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Index</span><span class="p">)):</span>
<span class="k">if</span> <span class="n">almost</span><span class="p">:</span>
<span class="n">_assert_pandas_almost_equal</span><span class="p">(</span><span class="n">lobj</span><span class="p">,</span> <span class="n">robj</span><span class="p">,</span> <span class="n">rtol</span><span class="o">=</span><span class="n">rtol</span><span class="p">,</span> <span class="n">atol</span><span class="o">=</span><span class="n">atol</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">_assert_pandas_equal</span><span class="p">(</span><span class="n">lobj</span><span class="p">,</span> <span class="n">robj</span><span class="p">,</span> <span class="n">checkExact</span><span class="o">=</span><span class="n">check_exact</span><span class="p">)</span>
<span class="k">elif</span> <span class="n">is_list_like</span><span class="p">(</span><span class="n">lobj</span><span class="p">)</span> <span class="ow">and</span> <span class="n">is_list_like</span><span class="p">(</span><span class="n">robj</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">assertTrue</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">left</span><span class="p">)</span> <span class="o">==</span> <span class="nb">len</span><span class="p">(</span><span class="n">right</span><span class="p">))</span>
<span class="k">for</span> <span class="n">litem</span><span class="p">,</span> <span class="n">ritem</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">left</span><span class="p">,</span> <span class="n">right</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">assert_eq</span><span class="p">(</span><span class="n">litem</span><span class="p">,</span> <span class="n">ritem</span><span class="p">,</span> <span class="n">check_exact</span><span class="o">=</span><span class="n">check_exact</span><span class="p">,</span> <span class="n">almost</span><span class="o">=</span><span class="n">almost</span><span class="p">)</span>
<span class="k">elif</span> <span class="p">(</span><span class="n">lobj</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">pd</span><span class="o">.</span><span class="n">isna</span><span class="p">(</span><span class="n">lobj</span><span class="p">))</span> <span class="ow">and</span> <span class="p">(</span><span class="n">robj</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">pd</span><span class="o">.</span><span class="n">isna</span><span class="p">(</span><span class="n">robj</span><span class="p">)):</span>
<span class="k">pass</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">if</span> <span class="n">almost</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">assertAlmostEqual</span><span class="p">(</span><span class="n">lobj</span><span class="p">,</span> <span class="n">robj</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="bp">self</span><span class="o">.</span><span class="n">assertEqual</span><span class="p">(</span><span class="n">lobj</span><span class="p">,</span> <span class="n">robj</span><span class="p">)</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">_to_pandas</span><span class="p">(</span><span class="n">obj</span><span class="p">:</span> <span class="n">Any</span><span class="p">):</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">obj</span><span class="p">,</span> <span class="p">(</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">Series</span><span class="p">,</span> <span class="n">Index</span><span class="p">)):</span>
<span class="k">return</span> <span class="n">obj</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">obj</span>
<span class="k">class</span> <span class="nc">PandasOnSparkTestCase</span><span class="p">(</span><span class="n">ReusedSQLTestCase</span><span class="p">,</span> <span class="n">PandasOnSparkTestUtils</span><span class="p">):</span>
<span class="nd">@classmethod</span>
<span class="k">def</span> <span class="nf">setUpClass</span><span class="p">(</span><span class="bp">cls</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">PandasOnSparkTestCase</span><span class="p">,</span> <span class="bp">cls</span><span class="p">)</span><span class="o">.</span><span class="n">setUpClass</span><span class="p">()</span>
<span class="bp">cls</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">conf</span><span class="o">.</span><span class="n">set</span><span class="p">(</span><span class="n">SPARK_CONF_ARROW_ENABLED</span><span class="p">,</span> <span class="kc">True</span><span class="p">)</span>
<span class="k">class</span> <span class="nc">TestUtils</span><span class="p">:</span>
<span class="nd">@contextmanager</span>
<span class="k">def</span> <span class="nf">temp_dir</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="n">tmp</span> <span class="o">=</span> <span class="n">tempfile</span><span class="o">.</span><span class="n">mkdtemp</span><span class="p">()</span>
<span class="k">try</span><span class="p">:</span>
<span class="k">yield</span> <span class="n">tmp</span>
<span class="k">finally</span><span class="p">:</span>
<span class="n">shutil</span><span class="o">.</span><span class="n">rmtree</span><span class="p">(</span><span class="n">tmp</span><span class="p">)</span>
<span class="nd">@contextmanager</span>
<span class="k">def</span> <span class="nf">temp_file</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">with</span> <span class="bp">self</span><span class="o">.</span><span class="n">temp_dir</span><span class="p">()</span> <span class="k">as</span> <span class="n">tmp</span><span class="p">:</span>
<span class="k">yield</span> <span class="n">tempfile</span><span class="o">.</span><span class="n">mkstemp</span><span class="p">(</span><span class="nb">dir</span><span class="o">=</span><span class="n">tmp</span><span class="p">)[</span><span class="mi">1</span><span class="p">]</span>
<span class="k">class</span> <span class="nc">ComparisonTestBase</span><span class="p">(</span><span class="n">PandasOnSparkTestCase</span><span class="p">):</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">psdf</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="n">ps</span><span class="o">.</span><span class="n">from_pandas</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">pdf</span><span class="p">)</span>
<span class="nd">@property</span>
<span class="k">def</span> <span class="nf">pdf</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">psdf</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">compare_both</span><span class="p">(</span><span class="n">f</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">almost</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
<span class="k">if</span> <span class="n">f</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
<span class="k">return</span> <span class="n">functools</span><span class="o">.</span><span class="n">partial</span><span class="p">(</span><span class="n">compare_both</span><span class="p">,</span> <span class="n">almost</span><span class="o">=</span><span class="n">almost</span><span class="p">)</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">f</span><span class="p">,</span> <span class="nb">bool</span><span class="p">):</span>
<span class="k">return</span> <span class="n">functools</span><span class="o">.</span><span class="n">partial</span><span class="p">(</span><span class="n">compare_both</span><span class="p">,</span> <span class="n">almost</span><span class="o">=</span><span class="n">f</span><span class="p">)</span>
<span class="nd">@functools</span><span class="o">.</span><span class="n">wraps</span><span class="p">(</span><span class="n">f</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">wrapped</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">if</span> <span class="n">almost</span><span class="p">:</span>
<span class="n">compare</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">assertPandasAlmostEqual</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">compare</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">assertPandasEqual</span>
<span class="k">for</span> <span class="n">result_pandas</span><span class="p">,</span> <span class="n">result_spark</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">f</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">pdf</span><span class="p">),</span> <span class="n">f</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">psdf</span><span class="p">)):</span>
<span class="n">compare</span><span class="p">(</span><span class="n">result_pandas</span><span class="p">,</span> <span class="n">result_spark</span><span class="o">.</span><span class="n">to_pandas</span><span class="p">())</span>
<span class="k">return</span> <span class="n">wrapped</span>
<span class="nd">@contextmanager</span>
<span class="k">def</span> <span class="nf">assert_produces_warning</span><span class="p">(</span>
<span class="n">expected_warning</span><span class="o">=</span><span class="ne">Warning</span><span class="p">,</span>
<span class="n">filter_level</span><span class="o">=</span><span class="s2">&quot;always&quot;</span><span class="p">,</span>
<span class="n">check_stacklevel</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">raise_on_extra_warnings</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Context manager for running code expected to either raise a specific</span>
<span class="sd"> warning, or not raise any warnings. Verifies that the code raises the</span>
<span class="sd"> expected warning, and that it does not raise any other unexpected</span>
<span class="sd"> warnings. It is basically a wrapper around ``warnings.catch_warnings``.</span>
<span class="sd"> Notes</span>
<span class="sd"> -----</span>
<span class="sd"> Replicated from pandas/_testing/_warnings.py.</span>
<span class="sd"> Parameters</span>
<span class="sd"> ----------</span>
<span class="sd"> expected_warning : {Warning, False, None}, default Warning</span>
<span class="sd"> The type of Exception raised. ``exception.Warning`` is the base</span>
<span class="sd"> class for all warnings. To check that no warning is returned,</span>
<span class="sd"> specify ``False`` or ``None``.</span>
<span class="sd"> filter_level : str or None, default &quot;always&quot;</span>
<span class="sd"> Specifies whether warnings are ignored, displayed, or turned</span>
<span class="sd"> into errors.</span>
<span class="sd"> Valid values are:</span>
<span class="sd"> * &quot;error&quot; - turns matching warnings into exceptions</span>
<span class="sd"> * &quot;ignore&quot; - discard the warning</span>
<span class="sd"> * &quot;always&quot; - always emit a warning</span>
<span class="sd"> * &quot;default&quot; - print the warning the first time it is generated</span>
<span class="sd"> from each location</span>
<span class="sd"> * &quot;module&quot; - print the warning the first time it is generated</span>
<span class="sd"> from each module</span>
<span class="sd"> * &quot;once&quot; - print the warning the first time it is generated</span>
<span class="sd"> check_stacklevel : bool, default True</span>
<span class="sd"> If True, displays the line that called the function containing</span>
<span class="sd"> the warning to show were the function is called. Otherwise, the</span>
<span class="sd"> line that implements the function is displayed.</span>
<span class="sd"> raise_on_extra_warnings : bool, default True</span>
<span class="sd"> Whether extra warnings not of the type `expected_warning` should</span>
<span class="sd"> cause the test to fail.</span>
<span class="sd"> Examples</span>
<span class="sd"> --------</span>
<span class="sd"> &gt;&gt;&gt; import warnings</span>
<span class="sd"> &gt;&gt;&gt; with assert_produces_warning():</span>
<span class="sd"> ... warnings.warn(UserWarning())</span>
<span class="sd"> ...</span>
<span class="sd"> &gt;&gt;&gt; with assert_produces_warning(False): # doctest: +SKIP</span>
<span class="sd"> ... warnings.warn(RuntimeWarning())</span>
<span class="sd"> ...</span>
<span class="sd"> Traceback (most recent call last):</span>
<span class="sd"> ...</span>
<span class="sd"> AssertionError: Caused unexpected warning(s): [&#39;RuntimeWarning&#39;].</span>
<span class="sd"> &gt;&gt;&gt; with assert_produces_warning(UserWarning): # doctest: +SKIP</span>
<span class="sd"> ... warnings.warn(RuntimeWarning())</span>
<span class="sd"> Traceback (most recent call last):</span>
<span class="sd"> ...</span>
<span class="sd"> AssertionError: Did not see expected warning of class &#39;UserWarning&#39;</span>
<span class="sd"> ..warn:: This is *not* thread-safe.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">__tracebackhide__</span> <span class="o">=</span> <span class="kc">True</span>
<span class="k">with</span> <span class="n">warnings</span><span class="o">.</span><span class="n">catch_warnings</span><span class="p">(</span><span class="n">record</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span> <span class="k">as</span> <span class="n">w</span><span class="p">:</span>
<span class="n">saw_warning</span> <span class="o">=</span> <span class="kc">False</span>
<span class="n">warnings</span><span class="o">.</span><span class="n">simplefilter</span><span class="p">(</span><span class="n">filter_level</span><span class="p">)</span>
<span class="k">yield</span> <span class="n">w</span>
<span class="n">extra_warnings</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">actual_warning</span> <span class="ow">in</span> <span class="n">w</span><span class="p">:</span>
<span class="k">if</span> <span class="n">expected_warning</span> <span class="ow">and</span> <span class="nb">issubclass</span><span class="p">(</span><span class="n">actual_warning</span><span class="o">.</span><span class="n">category</span><span class="p">,</span> <span class="n">expected_warning</span><span class="p">):</span>
<span class="n">saw_warning</span> <span class="o">=</span> <span class="kc">True</span>
<span class="k">if</span> <span class="n">check_stacklevel</span> <span class="ow">and</span> <span class="nb">issubclass</span><span class="p">(</span>
<span class="n">actual_warning</span><span class="o">.</span><span class="n">category</span><span class="p">,</span> <span class="p">(</span><span class="ne">FutureWarning</span><span class="p">,</span> <span class="ne">DeprecationWarning</span><span class="p">)</span>
<span class="p">):</span>
<span class="kn">from</span> <span class="nn">inspect</span> <span class="kn">import</span> <span class="n">getframeinfo</span><span class="p">,</span> <span class="n">stack</span>
<span class="n">caller</span> <span class="o">=</span> <span class="n">getframeinfo</span><span class="p">(</span><span class="n">stack</span><span class="p">()[</span><span class="mi">2</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
<span class="n">msg</span> <span class="o">=</span> <span class="p">(</span>
<span class="s2">&quot;Warning not set with correct stacklevel. &quot;</span><span class="p">,</span>
<span class="s2">&quot;File where warning is raised: </span><span class="si">{}</span><span class="s2"> != &quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">actual_warning</span><span class="o">.</span><span class="n">filename</span><span class="p">),</span>
<span class="s2">&quot;</span><span class="si">{}</span><span class="s2">. Warning message: </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">caller</span><span class="o">.</span><span class="n">filename</span><span class="p">,</span> <span class="n">actual_warning</span><span class="o">.</span><span class="n">message</span><span class="p">),</span>
<span class="p">)</span>
<span class="k">assert</span> <span class="n">actual_warning</span><span class="o">.</span><span class="n">filename</span> <span class="o">==</span> <span class="n">caller</span><span class="o">.</span><span class="n">filename</span><span class="p">,</span> <span class="n">msg</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">extra_warnings</span><span class="o">.</span><span class="n">append</span><span class="p">(</span>
<span class="p">(</span>
<span class="n">actual_warning</span><span class="o">.</span><span class="n">category</span><span class="o">.</span><span class="vm">__name__</span><span class="p">,</span>
<span class="n">actual_warning</span><span class="o">.</span><span class="n">message</span><span class="p">,</span>
<span class="n">actual_warning</span><span class="o">.</span><span class="n">filename</span><span class="p">,</span>
<span class="n">actual_warning</span><span class="o">.</span><span class="n">lineno</span><span class="p">,</span>
<span class="p">)</span>
<span class="p">)</span>
<span class="k">if</span> <span class="n">expected_warning</span><span class="p">:</span>
<span class="n">msg</span> <span class="o">=</span> <span class="s2">&quot;Did not see expected warning of class </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">repr</span><span class="p">(</span><span class="n">expected_warning</span><span class="o">.</span><span class="vm">__name__</span><span class="p">))</span>
<span class="k">assert</span> <span class="n">saw_warning</span><span class="p">,</span> <span class="n">msg</span>
<span class="k">if</span> <span class="n">raise_on_extra_warnings</span> <span class="ow">and</span> <span class="n">extra_warnings</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">AssertionError</span><span class="p">(</span><span class="s2">&quot;Caused unexpected warning(s): </span><span class="si">{}</span><span class="s2">&quot;</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">repr</span><span class="p">(</span><span class="n">extra_warnings</span><span class="p">)))</span>
</pre></div>
</div>
<!-- Previous / next buttons -->
<div class='prev-next-area'>
</div>
</main>
</div>
</div>
<script src="../../../_static/scripts/pydata-sphinx-theme.js?digest=1999514e3f237ded88cf"></script>
<footer class="footer mt-5 mt-md-0">
<div class="container">
<div class="footer-item">
<p class="copyright">
&copy; Copyright .<br>
</p>
</div>
<div class="footer-item">
<p class="sphinx-version">
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 3.0.4.<br>
</p>
</div>
</div>
</footer>
</body>
</html>