|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | <!DOCTYPE html> | 
|  | <html class="no-js"> | 
|  | <head> | 
|  | <meta charset="utf-8"> | 
|  | <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> | 
|  | <meta name="viewport" content="width=device-width, initial-scale=1.0"> | 
|  |  | 
|  | <title>Basic Statistics - Spark 4.0.0-preview2 Documentation</title> | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/css/bootstrap.min.css" rel="stylesheet" | 
|  | integrity="sha384-EVSTQN3/azprG1Anm3QDgpJLIm9Nao0Yz1ztcQTwFspd3yD65VohhpuuCOmLASjC" crossorigin="anonymous"> | 
|  | <link rel="preconnect" href="https://fonts.googleapis.com"> | 
|  | <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> | 
|  | <link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,wght@0,400;0,500;0,700;1,400;1,500;1,700&Courier+Prime:wght@400;700&display=swap" rel="stylesheet"> | 
|  | <link href="css/custom.css" rel="stylesheet"> | 
|  | <script src="/js/vendor/modernizr-2.6.1-respond-1.1.0.min.js"></script> | 
|  |  | 
|  | <link rel="stylesheet" href="css/pygments-default.css"> | 
|  | <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/docsearch.js@2/dist/cdn/docsearch.min.css" /> | 
|  | <link rel="stylesheet" href="css/docsearch.css"> | 
|  |  | 
|  |  | 
|  | <!-- Matomo --> | 
|  | <script> | 
|  | var _paq = window._paq = window._paq || []; | 
|  | /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ | 
|  | _paq.push(["disableCookies"]); | 
|  | _paq.push(['trackPageView']); | 
|  | _paq.push(['enableLinkTracking']); | 
|  | (function() { | 
|  | var u="https://analytics.apache.org/"; | 
|  | _paq.push(['setTrackerUrl', u+'matomo.php']); | 
|  | _paq.push(['setSiteId', '40']); | 
|  | var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; | 
|  | g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); | 
|  | })(); | 
|  | </script> | 
|  | <!-- End Matomo Code --> | 
|  |  | 
|  |  | 
|  | </head> | 
|  | <body class="global"> | 
|  | <!-- This code is taken from http://twitter.github.com/bootstrap/examples/hero.html --> | 
|  | <nav class="navbar navbar-expand-lg navbar-dark p-0 px-4 fixed-top" style="background: #1d6890;" id="topbar"> | 
|  | <div class="navbar-brand"><a href="index.html"> | 
|  | <img src="https://spark.apache.org/images/spark-logo-rev.svg" width="141" height="72"/></a><span class="version">4.0.0-preview2</span> | 
|  | </div> | 
|  | <button class="navbar-toggler" type="button" data-toggle="collapse" | 
|  | data-target="#navbarCollapse" aria-controls="navbarCollapse" | 
|  | aria-expanded="false" aria-label="Toggle navigation"> | 
|  | <span class="navbar-toggler-icon"></span> | 
|  | </button> | 
|  | <div class="collapse navbar-collapse" id="navbarCollapse"> | 
|  | <ul class="navbar-nav me-auto"> | 
|  | <li class="nav-item"><a href="index.html" class="nav-link">Overview</a></li> | 
|  |  | 
|  | <li class="nav-item dropdown"> | 
|  | <a href="#" class="nav-link dropdown-toggle" id="navbarQuickStart" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Programming Guides</a> | 
|  | <div class="dropdown-menu" aria-labelledby="navbarQuickStart"> | 
|  | <a class="dropdown-item" href="quick-start.html">Quick Start</a> | 
|  | <a class="dropdown-item" href="rdd-programming-guide.html">RDDs, Accumulators, Broadcasts Vars</a> | 
|  | <a class="dropdown-item" href="sql-programming-guide.html">SQL, DataFrames, and Datasets</a> | 
|  | <a class="dropdown-item" href="streaming/index.html">Structured Streaming</a> | 
|  | <a class="dropdown-item" href="streaming-programming-guide.html">Spark Streaming (DStreams)</a> | 
|  | <a class="dropdown-item" href="ml-guide.html">MLlib (Machine Learning)</a> | 
|  | <a class="dropdown-item" href="graphx-programming-guide.html">GraphX (Graph Processing)</a> | 
|  | <a class="dropdown-item" href="sparkr.html">SparkR (R on Spark)</a> | 
|  | <a class="dropdown-item" href="api/python/getting_started/index.html">PySpark (Python on Spark)</a> | 
|  | </div> | 
|  | </li> | 
|  |  | 
|  | <li class="nav-item dropdown"> | 
|  | <a href="#" class="nav-link dropdown-toggle" id="navbarAPIDocs" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">API Docs</a> | 
|  | <div class="dropdown-menu" aria-labelledby="navbarAPIDocs"> | 
|  | <a class="dropdown-item" href="api/python/index.html">Python</a> | 
|  | <a class="dropdown-item" href="api/scala/org/apache/spark/index.html">Scala</a> | 
|  | <a class="dropdown-item" href="api/java/index.html">Java</a> | 
|  | <a class="dropdown-item" href="api/R/index.html">R</a> | 
|  | <a class="dropdown-item" href="api/sql/index.html">SQL, Built-in Functions</a> | 
|  | </div> | 
|  | </li> | 
|  |  | 
|  | <li class="nav-item dropdown"> | 
|  | <a href="#" class="nav-link dropdown-toggle" id="navbarDeploying" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">Deploying</a> | 
|  | <div class="dropdown-menu" aria-labelledby="navbarDeploying"> | 
|  | <a class="dropdown-item" href="cluster-overview.html">Overview</a> | 
|  | <a class="dropdown-item" href="submitting-applications.html">Submitting Applications</a> | 
|  | <div class="dropdown-divider"></div> | 
|  | <a class="dropdown-item" href="spark-standalone.html">Spark Standalone</a> | 
|  | <a class="dropdown-item" href="running-on-yarn.html">YARN</a> | 
|  | <a class="dropdown-item" href="running-on-kubernetes.html">Kubernetes</a> | 
|  | </div> | 
|  | </li> | 
|  |  | 
|  | <li class="nav-item dropdown"> | 
|  | <a href="#" class="nav-link dropdown-toggle" id="navbarMore" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">More</a> | 
|  | <div class="dropdown-menu" aria-labelledby="navbarMore"> | 
|  | <a class="dropdown-item" href="configuration.html">Configuration</a> | 
|  | <a class="dropdown-item" href="monitoring.html">Monitoring</a> | 
|  | <a class="dropdown-item" href="tuning.html">Tuning Guide</a> | 
|  | <a class="dropdown-item" href="job-scheduling.html">Job Scheduling</a> | 
|  | <a class="dropdown-item" href="security.html">Security</a> | 
|  | <a class="dropdown-item" href="hardware-provisioning.html">Hardware Provisioning</a> | 
|  | <a class="dropdown-item" href="migration-guide.html">Migration Guide</a> | 
|  | <div class="dropdown-divider"></div> | 
|  | <a class="dropdown-item" href="building-spark.html">Building Spark</a> | 
|  | <a class="dropdown-item" href="https://spark.apache.org/contributing.html">Contributing to Spark</a> | 
|  | <a class="dropdown-item" href="https://spark.apache.org/third-party-projects.html">Third Party Projects</a> | 
|  | </div> | 
|  | </li> | 
|  |  | 
|  | <li class="nav-item"> | 
|  | <input type="text" id="docsearch-input" placeholder="Search the docs…"> | 
|  | </li> | 
|  | </ul> | 
|  | <!--<span class="navbar-text navbar-right"><span class="version-text">v4.0.0-preview2</span></span>--> | 
|  | </div> | 
|  | </nav> | 
|  |  | 
|  |  | 
|  |  | 
|  | <div class="container"> | 
|  |  | 
|  |  | 
|  | <div class="left-menu-wrapper"> | 
|  | <div class="left-menu"> | 
|  | <h3><a href="ml-guide.html">MLlib: Main Guide</a></h3> | 
|  |  | 
|  | <ul> | 
|  |  | 
|  | <li> | 
|  | <a href="ml-statistics.html"> | 
|  |  | 
|  | Basic statistics | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="ml-datasource.html"> | 
|  |  | 
|  | Data sources | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="ml-pipeline.html"> | 
|  |  | 
|  | Pipelines | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="ml-features.html"> | 
|  |  | 
|  | Extracting, transforming and selecting features | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="ml-classification-regression.html"> | 
|  |  | 
|  | Classification and Regression | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="ml-clustering.html"> | 
|  |  | 
|  | Clustering | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="ml-collaborative-filtering.html"> | 
|  |  | 
|  | Collaborative filtering | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="ml-frequent-pattern-mining.html"> | 
|  |  | 
|  | Frequent Pattern Mining | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="ml-tuning.html"> | 
|  |  | 
|  | Model selection and tuning | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="ml-advanced.html"> | 
|  |  | 
|  | Advanced topics | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | </ul> | 
|  |  | 
|  | <h3><a href="mllib-guide.html">MLlib: RDD-based API Guide</a></h3> | 
|  |  | 
|  | <ul> | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-data-types.html"> | 
|  |  | 
|  | Data types | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-statistics.html"> | 
|  |  | 
|  | Basic statistics | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-classification-regression.html"> | 
|  |  | 
|  | Classification and regression | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-collaborative-filtering.html"> | 
|  |  | 
|  | Collaborative filtering | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-clustering.html"> | 
|  |  | 
|  | Clustering | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-dimensionality-reduction.html"> | 
|  |  | 
|  | Dimensionality reduction | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-feature-extraction.html"> | 
|  |  | 
|  | Feature extraction and transformation | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-frequent-pattern-mining.html"> | 
|  |  | 
|  | Frequent pattern mining | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-evaluation-metrics.html"> | 
|  |  | 
|  | Evaluation metrics | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-pmml-model-export.html"> | 
|  |  | 
|  | PMML model export | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | <li> | 
|  | <a href="mllib-optimization.html"> | 
|  |  | 
|  | Optimization (developer) | 
|  |  | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  |  | 
|  | </ul> | 
|  |  | 
|  | </div> | 
|  | </div> | 
|  |  | 
|  | <input id="nav-trigger" class="nav-trigger" checked type="checkbox"> | 
|  | <label for="nav-trigger"></label> | 
|  | <div class="content-with-sidebar mr-3" id="content"> | 
|  |  | 
|  | <h1 class="title">Basic Statistics</h1> | 
|  |  | 
|  |  | 
|  | <p><code class="language-plaintext highlighter-rouge">\[ | 
|  | \newcommand{\R}{\mathbb{R}} | 
|  | \newcommand{\E}{\mathbb{E}} | 
|  | \newcommand{\x}{\mathbf{x}} | 
|  | \newcommand{\y}{\mathbf{y}} | 
|  | \newcommand{\wv}{\mathbf{w}} | 
|  | \newcommand{\av}{\mathbf{\alpha}} | 
|  | \newcommand{\bv}{\mathbf{b}} | 
|  | \newcommand{\N}{\mathbb{N}} | 
|  | \newcommand{\id}{\mathbf{I}} | 
|  | \newcommand{\ind}{\mathbf{1}} | 
|  | \newcommand{\0}{\mathbf{0}} | 
|  | \newcommand{\unit}{\mathbf{e}} | 
|  | \newcommand{\one}{\mathbf{1}} | 
|  | \newcommand{\zero}{\mathbf{0}} | 
|  | \]</code></p> | 
|  |  | 
|  | <p><strong>Table of Contents</strong></p> | 
|  |  | 
|  | <ul id="markdown-toc"> | 
|  | <li><a href="#correlation" id="markdown-toc-correlation">Correlation</a></li> | 
|  | <li><a href="#hypothesis-testing" id="markdown-toc-hypothesis-testing">Hypothesis testing</a>    <ul> | 
|  | <li><a href="#chisquaretest" id="markdown-toc-chisquaretest">ChiSquareTest</a></li> | 
|  | </ul> | 
|  | </li> | 
|  | <li><a href="#summarizer" id="markdown-toc-summarizer">Summarizer</a></li> | 
|  | </ul> | 
|  |  | 
|  | <h2 id="correlation">Correlation</h2> | 
|  |  | 
|  | <p>Calculating the correlation between two series of data is a common operation in Statistics. In <code class="language-plaintext highlighter-rouge">spark.ml</code> | 
|  | we provide the flexibility to calculate pairwise correlations among many series. The supported | 
|  | correlation methods are currently Pearson’s and Spearman’s correlation.</p> | 
|  |  | 
|  | <div class="codetabs"> | 
|  |  | 
|  | <div data-lang="python"> | 
|  | <p><a href="api/python/reference/api/pyspark.ml.stat.Correlation.html"><code class="language-plaintext highlighter-rouge">Correlation</code></a> | 
|  | computes the correlation matrix for the input Dataset of Vectors using the specified method. | 
|  | The output will be a DataFrame that contains the correlation matrix of the column of vectors.</p> | 
|  |  | 
|  | <div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml.linalg</span> <span class="kn">import</span> <span class="n">Vectors</span> | 
|  | <span class="kn">from</span> <span class="nn">pyspark.ml.stat</span> <span class="kn">import</span> <span class="n">Correlation</span> | 
|  |  | 
|  | <span class="n">data</span> <span class="o">=</span> <span class="p">[(</span><span class="n">Vectors</span><span class="p">.</span><span class="n">sparse</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="p">[(</span><span class="mi">0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">),</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="o">-</span><span class="mf">2.0</span><span class="p">)]),),</span> | 
|  | <span class="p">(</span><span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">([</span><span class="mf">4.0</span><span class="p">,</span> <span class="mf">5.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="mf">3.0</span><span class="p">]),),</span> | 
|  | <span class="p">(</span><span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">([</span><span class="mf">6.0</span><span class="p">,</span> <span class="mf">7.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">,</span> <span class="mf">8.0</span><span class="p">]),),</span> | 
|  | <span class="p">(</span><span class="n">Vectors</span><span class="p">.</span><span class="n">sparse</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="p">[(</span><span class="mi">0</span><span class="p">,</span> <span class="mf">9.0</span><span class="p">),</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">)]),)]</span> | 
|  | <span class="n">df</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">createDataFrame</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="p">[</span><span class="s">"features"</span><span class="p">])</span> | 
|  |  | 
|  | <span class="n">r1</span> <span class="o">=</span> <span class="n">Correlation</span><span class="p">.</span><span class="n">corr</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="s">"features"</span><span class="p">).</span><span class="n">head</span><span class="p">()</span> | 
|  |  | 
|  |  | 
|  | <span class="k">print</span><span class="p">(</span><span class="s">"Pearson correlation matrix:</span><span class="se">\n</span><span class="s">"</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">r1</span><span class="p">[</span><span class="mi">0</span><span class="p">]))</span> | 
|  |  | 
|  | <span class="n">r2</span> <span class="o">=</span> <span class="n">Correlation</span><span class="p">.</span><span class="n">corr</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="s">"features"</span><span class="p">,</span> <span class="s">"spearman"</span><span class="p">).</span><span class="n">head</span><span class="p">()</span> | 
|  |  | 
|  |  | 
|  | <span class="k">print</span><span class="p">(</span><span class="s">"Spearman correlation matrix:</span><span class="se">\n</span><span class="s">"</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">r2</span><span class="p">[</span><span class="mi">0</span><span class="p">]))</span></code></pre></div> | 
|  | <div><small>Find full example code at "examples/src/main/python/ml/correlation_example.py" in the Spark repo.</small></div> | 
|  | </div> | 
|  |  | 
|  | <div data-lang="scala"> | 
|  | <p><a href="api/scala/org/apache/spark/ml/stat/Correlation$.html"><code class="language-plaintext highlighter-rouge">Correlation</code></a> | 
|  | computes the correlation matrix for the input Dataset of Vectors using the specified method. | 
|  | The output will be a DataFrame that contains the correlation matrix of the column of vectors.</p> | 
|  |  | 
|  | <div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.linalg.</span><span class="o">{</span><span class="nc">Matrix</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">}</span> | 
|  | <span class="k">import</span> <span class="nn">org.apache.spark.ml.stat.Correlation</span> | 
|  | <span class="k">import</span> <span class="nn">org.apache.spark.sql.Row</span> | 
|  |  | 
|  | <span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nc">Seq</span><span class="o">(</span> | 
|  | <span class="nv">Vectors</span><span class="o">.</span><span class="py">sparse</span><span class="o">(</span><span class="mi">4</span><span class="o">,</span> <span class="nc">Seq</span><span class="o">((</span><span class="mi">0</span><span class="o">,</span> <span class="mf">1.0</span><span class="o">),</span> <span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="o">-</span><span class="mf">2.0</span><span class="o">))),</span> | 
|  | <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">4.0</span><span class="o">,</span> <span class="mf">5.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">),</span> | 
|  | <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">6.0</span><span class="o">,</span> <span class="mf">7.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">8.0</span><span class="o">),</span> | 
|  | <span class="nv">Vectors</span><span class="o">.</span><span class="py">sparse</span><span class="o">(</span><span class="mi">4</span><span class="o">,</span> <span class="nc">Seq</span><span class="o">((</span><span class="mi">0</span><span class="o">,</span> <span class="mf">9.0</span><span class="o">),</span> <span class="o">(</span><span class="mi">3</span><span class="o">,</span> <span class="mf">1.0</span><span class="o">)))</span> | 
|  | <span class="o">)</span> | 
|  |  | 
|  | <span class="k">val</span> <span class="nv">df</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">map</span><span class="o">(</span><span class="nv">Tuple1</span><span class="o">.</span><span class="py">apply</span><span class="o">).</span><span class="py">toDF</span><span class="o">(</span><span class="s">"features"</span><span class="o">)</span> | 
|  | <span class="k">val</span> <span class="nv">Row</span><span class="o">(</span><span class="n">coeff1</span><span class="k">:</span> <span class="kt">Matrix</span><span class="o">)</span> <span class="k">=</span> <span class="nv">Correlation</span><span class="o">.</span><span class="py">corr</span><span class="o">(</span><span class="n">df</span><span class="o">,</span> <span class="s">"features"</span><span class="o">).</span><span class="py">head</span><span class="o">()</span> | 
|  | <span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Pearson correlation matrix:\n $coeff1"</span><span class="o">)</span> | 
|  |  | 
|  | <span class="k">val</span> <span class="nv">Row</span><span class="o">(</span><span class="n">coeff2</span><span class="k">:</span> <span class="kt">Matrix</span><span class="o">)</span> <span class="k">=</span> <span class="nv">Correlation</span><span class="o">.</span><span class="py">corr</span><span class="o">(</span><span class="n">df</span><span class="o">,</span> <span class="s">"features"</span><span class="o">,</span> <span class="s">"spearman"</span><span class="o">).</span><span class="py">head</span><span class="o">()</span> | 
|  | <span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"Spearman correlation matrix:\n $coeff2"</span><span class="o">)</span></code></pre></div> | 
|  | <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/CorrelationExample.scala" in the Spark repo.</small></div> | 
|  | </div> | 
|  |  | 
|  | <div data-lang="java"> | 
|  | <p><a href="api/java/org/apache/spark/ml/stat/Correlation.html"><code class="language-plaintext highlighter-rouge">Correlation</code></a> | 
|  | computes the correlation matrix for the input Dataset of Vectors using the specified method. | 
|  | The output will be a DataFrame that contains the correlation matrix of the column of vectors.</p> | 
|  |  | 
|  | <div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">java.util.List</span><span class="o">;</span> | 
|  |  | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.ml.linalg.Vectors</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.ml.linalg.VectorUDT</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.ml.stat.Correlation</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.sql.RowFactory</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.*</span><span class="o">;</span> | 
|  |  | 
|  | <span class="nc">List</span><span class="o"><</span><span class="nc">Row</span><span class="o">></span> <span class="n">data</span> <span class="o">=</span> <span class="nc">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span> | 
|  | <span class="nc">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="nc">Vectors</span><span class="o">.</span><span class="na">sparse</span><span class="o">(</span><span class="mi">4</span><span class="o">,</span> <span class="k">new</span> <span class="kt">int</span><span class="o">[]{</span><span class="mi">0</span><span class="o">,</span> <span class="mi">3</span><span class="o">},</span> <span class="k">new</span> <span class="kt">double</span><span class="o">[]{</span><span class="mf">1.0</span><span class="o">,</span> <span class="o">-</span><span class="mf">2.0</span><span class="o">})),</span> | 
|  | <span class="nc">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">4.0</span><span class="o">,</span> <span class="mf">5.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">)),</span> | 
|  | <span class="nc">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">6.0</span><span class="o">,</span> <span class="mf">7.0</span><span class="o">,</span> <span class="mf">0.0</span><span class="o">,</span> <span class="mf">8.0</span><span class="o">)),</span> | 
|  | <span class="nc">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="nc">Vectors</span><span class="o">.</span><span class="na">sparse</span><span class="o">(</span><span class="mi">4</span><span class="o">,</span> <span class="k">new</span> <span class="kt">int</span><span class="o">[]{</span><span class="mi">0</span><span class="o">,</span> <span class="mi">3</span><span class="o">},</span> <span class="k">new</span> <span class="kt">double</span><span class="o">[]{</span><span class="mf">9.0</span><span class="o">,</span> <span class="mf">1.0</span><span class="o">}))</span> | 
|  | <span class="o">);</span> | 
|  |  | 
|  | <span class="nc">StructType</span> <span class="n">schema</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">StructType</span><span class="o">(</span><span class="k">new</span> <span class="nc">StructField</span><span class="o">[]{</span> | 
|  | <span class="k">new</span> <span class="nf">StructField</span><span class="o">(</span><span class="s">"features"</span><span class="o">,</span> <span class="k">new</span> <span class="nc">VectorUDT</span><span class="o">(),</span> <span class="kc">false</span><span class="o">,</span> <span class="nc">Metadata</span><span class="o">.</span><span class="na">empty</span><span class="o">()),</span> | 
|  | <span class="o">});</span> | 
|  |  | 
|  | <span class="nc">Dataset</span><span class="o"><</span><span class="nc">Row</span><span class="o">></span> <span class="n">df</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">createDataFrame</span><span class="o">(</span><span class="n">data</span><span class="o">,</span> <span class="n">schema</span><span class="o">);</span> | 
|  | <span class="nc">Row</span> <span class="n">r1</span> <span class="o">=</span> <span class="nc">Correlation</span><span class="o">.</span><span class="na">corr</span><span class="o">(</span><span class="n">df</span><span class="o">,</span> <span class="s">"features"</span><span class="o">).</span><span class="na">head</span><span class="o">();</span> | 
|  | <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Pearson correlation matrix:\n"</span> <span class="o">+</span> <span class="n">r1</span><span class="o">.</span><span class="na">get</span><span class="o">(</span><span class="mi">0</span><span class="o">).</span><span class="na">toString</span><span class="o">());</span> | 
|  |  | 
|  | <span class="nc">Row</span> <span class="n">r2</span> <span class="o">=</span> <span class="nc">Correlation</span><span class="o">.</span><span class="na">corr</span><span class="o">(</span><span class="n">df</span><span class="o">,</span> <span class="s">"features"</span><span class="o">,</span> <span class="s">"spearman"</span><span class="o">).</span><span class="na">head</span><span class="o">();</span> | 
|  | <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"Spearman correlation matrix:\n"</span> <span class="o">+</span> <span class="n">r2</span><span class="o">.</span><span class="na">get</span><span class="o">(</span><span class="mi">0</span><span class="o">).</span><span class="na">toString</span><span class="o">());</span></code></pre></div> | 
|  | <div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaCorrelationExample.java" in the Spark repo.</small></div> | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <h2 id="hypothesis-testing">Hypothesis testing</h2> | 
|  |  | 
|  | <p>Hypothesis testing is a powerful tool in statistics to determine whether a result is statistically | 
|  | significant, whether this result occurred by chance or not. <code class="language-plaintext highlighter-rouge">spark.ml</code> currently supports Pearson’s | 
|  | Chi-squared ( $\chi^2$) tests for independence.</p> | 
|  |  | 
|  | <h3 id="chisquaretest">ChiSquareTest</h3> | 
|  |  | 
|  | <p><code class="language-plaintext highlighter-rouge">ChiSquareTest</code> conducts Pearson’s independence test for every feature against the label. | 
|  | For each feature, the (feature, label) pairs are converted into a contingency matrix for which | 
|  | the Chi-squared statistic is computed. All label and feature values must be categorical.</p> | 
|  |  | 
|  | <div class="codetabs"> | 
|  |  | 
|  | <div data-lang="python"> | 
|  | <p>Refer to the <a href="api/python/reference/api/pyspark.ml.stat.ChiSquareTest.html"><code class="language-plaintext highlighter-rouge">ChiSquareTest</code> Python docs</a> for details on the API.</p> | 
|  |  | 
|  | <div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml.linalg</span> <span class="kn">import</span> <span class="n">Vectors</span> | 
|  | <span class="kn">from</span> <span class="nn">pyspark.ml.stat</span> <span class="kn">import</span> <span class="n">ChiSquareTest</span> | 
|  |  | 
|  | <span class="n">data</span> <span class="o">=</span> <span class="p">[(</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">(</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">10.0</span><span class="p">)),</span> | 
|  | <span class="p">(</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">(</span><span class="mf">1.5</span><span class="p">,</span> <span class="mf">20.0</span><span class="p">)),</span> | 
|  | <span class="p">(</span><span class="mf">1.0</span><span class="p">,</span> <span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">(</span><span class="mf">1.5</span><span class="p">,</span> <span class="mf">30.0</span><span class="p">)),</span> | 
|  | <span class="p">(</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">(</span><span class="mf">3.5</span><span class="p">,</span> <span class="mf">30.0</span><span class="p">)),</span> | 
|  | <span class="p">(</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">(</span><span class="mf">3.5</span><span class="p">,</span> <span class="mf">40.0</span><span class="p">)),</span> | 
|  | <span class="p">(</span><span class="mf">1.0</span><span class="p">,</span> <span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">(</span><span class="mf">3.5</span><span class="p">,</span> <span class="mf">40.0</span><span class="p">))]</span> | 
|  | <span class="n">df</span> <span class="o">=</span> <span class="n">spark</span><span class="p">.</span><span class="n">createDataFrame</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="p">[</span><span class="s">"label"</span><span class="p">,</span> <span class="s">"features"</span><span class="p">])</span> | 
|  |  | 
|  | <span class="n">r</span> <span class="o">=</span> <span class="n">ChiSquareTest</span><span class="p">.</span><span class="n">test</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="s">"features"</span><span class="p">,</span> <span class="s">"label"</span><span class="p">).</span><span class="n">head</span><span class="p">()</span> | 
|  |  | 
|  |  | 
|  |  | 
|  | <span class="k">print</span><span class="p">(</span><span class="s">"pValues: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">r</span><span class="p">.</span><span class="n">pValues</span><span class="p">))</span> | 
|  | <span class="k">print</span><span class="p">(</span><span class="s">"degreesOfFreedom: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">r</span><span class="p">.</span><span class="n">degreesOfFreedom</span><span class="p">))</span> | 
|  | <span class="k">print</span><span class="p">(</span><span class="s">"statistics: "</span> <span class="o">+</span> <span class="nb">str</span><span class="p">(</span><span class="n">r</span><span class="p">.</span><span class="n">statistics</span><span class="p">))</span></code></pre></div> | 
|  | <div><small>Find full example code at "examples/src/main/python/ml/chi_square_test_example.py" in the Spark repo.</small></div> | 
|  | </div> | 
|  |  | 
|  | <div data-lang="scala"> | 
|  | <p>Refer to the <a href="api/scala/org/apache/spark/ml/stat/ChiSquareTest$.html"><code class="language-plaintext highlighter-rouge">ChiSquareTest</code> Scala docs</a> for details on the API.</p> | 
|  |  | 
|  | <div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.linalg.</span><span class="o">{</span><span class="nc">Vector</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">}</span> | 
|  | <span class="k">import</span> <span class="nn">org.apache.spark.ml.stat.ChiSquareTest</span> | 
|  |  | 
|  | <span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nc">Seq</span><span class="o">(</span> | 
|  | <span class="o">(</span><span class="mf">0.0</span><span class="o">,</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">0.5</span><span class="o">,</span> <span class="mf">10.0</span><span class="o">)),</span> | 
|  | <span class="o">(</span><span class="mf">0.0</span><span class="o">,</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">1.5</span><span class="o">,</span> <span class="mf">20.0</span><span class="o">)),</span> | 
|  | <span class="o">(</span><span class="mf">1.0</span><span class="o">,</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">1.5</span><span class="o">,</span> <span class="mf">30.0</span><span class="o">)),</span> | 
|  | <span class="o">(</span><span class="mf">0.0</span><span class="o">,</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">3.5</span><span class="o">,</span> <span class="mf">30.0</span><span class="o">)),</span> | 
|  | <span class="o">(</span><span class="mf">0.0</span><span class="o">,</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">3.5</span><span class="o">,</span> <span class="mf">40.0</span><span class="o">)),</span> | 
|  | <span class="o">(</span><span class="mf">1.0</span><span class="o">,</span> <span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">3.5</span><span class="o">,</span> <span class="mf">40.0</span><span class="o">))</span> | 
|  | <span class="o">)</span> | 
|  |  | 
|  | <span class="k">val</span> <span class="nv">df</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">toDF</span><span class="o">(</span><span class="s">"label"</span><span class="o">,</span> <span class="s">"features"</span><span class="o">)</span> | 
|  | <span class="k">val</span> <span class="nv">chi</span> <span class="k">=</span> <span class="nv">ChiSquareTest</span><span class="o">.</span><span class="py">test</span><span class="o">(</span><span class="n">df</span><span class="o">,</span> <span class="s">"features"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">).</span><span class="py">head</span><span class="o">()</span> | 
|  | <span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"pValues = ${chi.getAs[Vector](0)}"</span><span class="o">)</span> | 
|  | <span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"degreesOfFreedom ${chi.getSeq[Int](1).mkString("</span><span class="o">[</span><span class="err">"</span>, <span class="err">"</span>,<span class="err">"</span>, <span class="err">"</span><span class="o">]</span><span class="s">")}"</span><span class="o">)</span> | 
|  | <span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"statistics ${chi.getAs[Vector](2)}"</span><span class="o">)</span></code></pre></div> | 
|  | <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/ChiSquareTestExample.scala" in the Spark repo.</small></div> | 
|  | </div> | 
|  |  | 
|  | <div data-lang="java"> | 
|  | <p>Refer to the <a href="api/java/org/apache/spark/ml/stat/ChiSquareTest.html"><code class="language-plaintext highlighter-rouge">ChiSquareTest</code> Java docs</a> for details on the API.</p> | 
|  |  | 
|  | <div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">java.util.List</span><span class="o">;</span> | 
|  |  | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.ml.linalg.Vectors</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.ml.linalg.VectorUDT</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.ml.stat.ChiSquareTest</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.sql.Dataset</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.sql.Row</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.sql.RowFactory</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.*</span><span class="o">;</span> | 
|  |  | 
|  | <span class="nc">List</span><span class="o"><</span><span class="nc">Row</span><span class="o">></span> <span class="n">data</span> <span class="o">=</span> <span class="nc">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span> | 
|  | <span class="nc">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mf">0.0</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">0.5</span><span class="o">,</span> <span class="mf">10.0</span><span class="o">)),</span> | 
|  | <span class="nc">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mf">0.0</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">1.5</span><span class="o">,</span> <span class="mf">20.0</span><span class="o">)),</span> | 
|  | <span class="nc">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mf">1.0</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">1.5</span><span class="o">,</span> <span class="mf">30.0</span><span class="o">)),</span> | 
|  | <span class="nc">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mf">0.0</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">3.5</span><span class="o">,</span> <span class="mf">30.0</span><span class="o">)),</span> | 
|  | <span class="nc">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mf">0.0</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">3.5</span><span class="o">,</span> <span class="mf">40.0</span><span class="o">)),</span> | 
|  | <span class="nc">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="mf">1.0</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">3.5</span><span class="o">,</span> <span class="mf">40.0</span><span class="o">))</span> | 
|  | <span class="o">);</span> | 
|  |  | 
|  | <span class="nc">StructType</span> <span class="n">schema</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">StructType</span><span class="o">(</span><span class="k">new</span> <span class="nc">StructField</span><span class="o">[]{</span> | 
|  | <span class="k">new</span> <span class="nf">StructField</span><span class="o">(</span><span class="s">"label"</span><span class="o">,</span> <span class="nc">DataTypes</span><span class="o">.</span><span class="na">DoubleType</span><span class="o">,</span> <span class="kc">false</span><span class="o">,</span> <span class="nc">Metadata</span><span class="o">.</span><span class="na">empty</span><span class="o">()),</span> | 
|  | <span class="k">new</span> <span class="nf">StructField</span><span class="o">(</span><span class="s">"features"</span><span class="o">,</span> <span class="k">new</span> <span class="nc">VectorUDT</span><span class="o">(),</span> <span class="kc">false</span><span class="o">,</span> <span class="nc">Metadata</span><span class="o">.</span><span class="na">empty</span><span class="o">()),</span> | 
|  | <span class="o">});</span> | 
|  |  | 
|  | <span class="nc">Dataset</span><span class="o"><</span><span class="nc">Row</span><span class="o">></span> <span class="n">df</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">createDataFrame</span><span class="o">(</span><span class="n">data</span><span class="o">,</span> <span class="n">schema</span><span class="o">);</span> | 
|  | <span class="nc">Row</span> <span class="n">r</span> <span class="o">=</span> <span class="nc">ChiSquareTest</span><span class="o">.</span><span class="na">test</span><span class="o">(</span><span class="n">df</span><span class="o">,</span> <span class="s">"features"</span><span class="o">,</span> <span class="s">"label"</span><span class="o">).</span><span class="na">head</span><span class="o">();</span> | 
|  | <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"pValues: "</span> <span class="o">+</span> <span class="n">r</span><span class="o">.</span><span class="na">get</span><span class="o">(</span><span class="mi">0</span><span class="o">).</span><span class="na">toString</span><span class="o">());</span> | 
|  | <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"degreesOfFreedom: "</span> <span class="o">+</span> <span class="n">r</span><span class="o">.</span><span class="na">getList</span><span class="o">(</span><span class="mi">1</span><span class="o">).</span><span class="na">toString</span><span class="o">());</span> | 
|  | <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"statistics: "</span> <span class="o">+</span> <span class="n">r</span><span class="o">.</span><span class="na">get</span><span class="o">(</span><span class="mi">2</span><span class="o">).</span><span class="na">toString</span><span class="o">());</span></code></pre></div> | 
|  | <div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaChiSquareTestExample.java" in the Spark repo.</small></div> | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <h2 id="summarizer">Summarizer</h2> | 
|  |  | 
|  | <p>We provide vector column summary statistics for <code class="language-plaintext highlighter-rouge">Dataframe</code> through <code class="language-plaintext highlighter-rouge">Summarizer</code>. | 
|  | Available metrics are the column-wise max, min, mean, sum, variance, std, and number of nonzeros, | 
|  | as well as the total count.</p> | 
|  |  | 
|  | <div class="codetabs"> | 
|  |  | 
|  | <div data-lang="python"> | 
|  | <p>Refer to the <a href="api/python/reference/api/pyspark.ml.stat.Summarizer.html"><code class="language-plaintext highlighter-rouge">Summarizer</code> Python docs</a> for details on the API.</p> | 
|  |  | 
|  | <div class="highlight"><pre class="codehilite"><code><span class="kn">from</span> <span class="nn">pyspark.ml.stat</span> <span class="kn">import</span> <span class="n">Summarizer</span> | 
|  | <span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">Row</span> | 
|  | <span class="kn">from</span> <span class="nn">pyspark.ml.linalg</span> <span class="kn">import</span> <span class="n">Vectors</span> | 
|  |  | 
|  | <span class="n">df</span> <span class="o">=</span> <span class="n">sc</span><span class="p">.</span><span class="n">parallelize</span><span class="p">([</span><span class="n">Row</span><span class="p">(</span><span class="n">weight</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span> <span class="n">features</span><span class="o">=</span><span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">(</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">,</span> <span class="mf">1.0</span><span class="p">)),</span> | 
|  | <span class="n">Row</span><span class="p">(</span><span class="n">weight</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">features</span><span class="o">=</span><span class="n">Vectors</span><span class="p">.</span><span class="n">dense</span><span class="p">(</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">2.0</span><span class="p">,</span> <span class="mf">3.0</span><span class="p">))]).</span><span class="n">toDF</span><span class="p">()</span> | 
|  |  | 
|  | <span class="c1"># create summarizer for multiple metrics "mean" and "count" | 
|  | </span><span class="n">summarizer</span> <span class="o">=</span> <span class="n">Summarizer</span><span class="p">.</span><span class="n">metrics</span><span class="p">(</span><span class="s">"mean"</span><span class="p">,</span> <span class="s">"count"</span><span class="p">)</span> | 
|  |  | 
|  | <span class="c1"># compute statistics for multiple metrics with weight | 
|  | </span><span class="n">df</span><span class="p">.</span><span class="n">select</span><span class="p">(</span><span class="n">summarizer</span><span class="p">.</span><span class="n">summary</span><span class="p">(</span><span class="n">df</span><span class="p">.</span><span class="n">features</span><span class="p">,</span> <span class="n">df</span><span class="p">.</span><span class="n">weight</span><span class="p">)).</span><span class="n">show</span><span class="p">(</span><span class="n">truncate</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span> | 
|  |  | 
|  | <span class="c1"># compute statistics for multiple metrics without weight | 
|  | </span><span class="n">df</span><span class="p">.</span><span class="n">select</span><span class="p">(</span><span class="n">summarizer</span><span class="p">.</span><span class="n">summary</span><span class="p">(</span><span class="n">df</span><span class="p">.</span><span class="n">features</span><span class="p">)).</span><span class="n">show</span><span class="p">(</span><span class="n">truncate</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span> | 
|  |  | 
|  | <span class="c1"># compute statistics for single metric "mean" with weight | 
|  | </span><span class="n">df</span><span class="p">.</span><span class="n">select</span><span class="p">(</span><span class="n">Summarizer</span><span class="p">.</span><span class="n">mean</span><span class="p">(</span><span class="n">df</span><span class="p">.</span><span class="n">features</span><span class="p">,</span> <span class="n">df</span><span class="p">.</span><span class="n">weight</span><span class="p">)).</span><span class="n">show</span><span class="p">(</span><span class="n">truncate</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span> | 
|  |  | 
|  | <span class="c1"># compute statistics for single metric "mean" without weight | 
|  | </span><span class="n">df</span><span class="p">.</span><span class="n">select</span><span class="p">(</span><span class="n">Summarizer</span><span class="p">.</span><span class="n">mean</span><span class="p">(</span><span class="n">df</span><span class="p">.</span><span class="n">features</span><span class="p">)).</span><span class="n">show</span><span class="p">(</span><span class="n">truncate</span><span class="o">=</span><span class="bp">False</span><span class="p">)</span></code></pre></div> | 
|  | <div><small>Find full example code at "examples/src/main/python/ml/summarizer_example.py" in the Spark repo.</small></div> | 
|  | </div> | 
|  |  | 
|  | <div data-lang="scala"> | 
|  | <p>The following example demonstrates using <a href="api/scala/org/apache/spark/ml/stat/Summarizer$.html"><code class="language-plaintext highlighter-rouge">Summarizer</code></a> | 
|  | to compute the mean and variance for a vector column of the input dataframe, with and without a weight column.</p> | 
|  |  | 
|  | <div class="highlight"><pre class="codehilite"><code><span class="k">import</span> <span class="nn">org.apache.spark.ml.linalg.</span><span class="o">{</span><span class="nc">Vector</span><span class="o">,</span> <span class="nc">Vectors</span><span class="o">}</span> | 
|  | <span class="k">import</span> <span class="nn">org.apache.spark.ml.stat.Summarizer</span> | 
|  |  | 
|  | <span class="k">val</span> <span class="nv">data</span> <span class="k">=</span> <span class="nc">Seq</span><span class="o">(</span> | 
|  | <span class="o">(</span><span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">2.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">,</span> <span class="mf">5.0</span><span class="o">),</span> <span class="mf">1.0</span><span class="o">),</span> | 
|  | <span class="o">(</span><span class="nv">Vectors</span><span class="o">.</span><span class="py">dense</span><span class="o">(</span><span class="mf">4.0</span><span class="o">,</span> <span class="mf">6.0</span><span class="o">,</span> <span class="mf">7.0</span><span class="o">),</span> <span class="mf">2.0</span><span class="o">)</span> | 
|  | <span class="o">)</span> | 
|  |  | 
|  | <span class="k">val</span> <span class="nv">df</span> <span class="k">=</span> <span class="nv">data</span><span class="o">.</span><span class="py">toDF</span><span class="o">(</span><span class="s">"features"</span><span class="o">,</span> <span class="s">"weight"</span><span class="o">)</span> | 
|  |  | 
|  | <span class="nf">val</span> <span class="o">(</span><span class="n">meanVal</span><span class="o">,</span> <span class="n">varianceVal</span><span class="o">)</span> <span class="k">=</span> <span class="nv">df</span><span class="o">.</span><span class="py">select</span><span class="o">(</span><span class="nf">metrics</span><span class="o">(</span><span class="s">"mean"</span><span class="o">,</span> <span class="s">"variance"</span><span class="o">)</span> | 
|  | <span class="o">.</span><span class="py">summary</span><span class="o">(</span><span class="n">$</span><span class="s">"features"</span><span class="o">,</span> <span class="n">$</span><span class="s">"weight"</span><span class="o">).</span><span class="py">as</span><span class="o">(</span><span class="s">"summary"</span><span class="o">))</span> | 
|  | <span class="o">.</span><span class="py">select</span><span class="o">(</span><span class="s">"summary.mean"</span><span class="o">,</span> <span class="s">"summary.variance"</span><span class="o">)</span> | 
|  | <span class="o">.</span><span class="py">as</span><span class="o">[(</span><span class="kt">Vector</span>, <span class="kt">Vector</span><span class="o">)].</span><span class="py">first</span><span class="o">()</span> | 
|  |  | 
|  | <span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"with weight: mean = ${meanVal}, variance = ${varianceVal}"</span><span class="o">)</span> | 
|  |  | 
|  | <span class="nf">val</span> <span class="o">(</span><span class="n">meanVal2</span><span class="o">,</span> <span class="n">varianceVal2</span><span class="o">)</span> <span class="k">=</span> <span class="nv">df</span><span class="o">.</span><span class="py">select</span><span class="o">(</span><span class="nf">mean</span><span class="o">(</span><span class="n">$</span><span class="s">"features"</span><span class="o">),</span> <span class="nf">variance</span><span class="o">(</span><span class="n">$</span><span class="s">"features"</span><span class="o">))</span> | 
|  | <span class="o">.</span><span class="py">as</span><span class="o">[(</span><span class="kt">Vector</span>, <span class="kt">Vector</span><span class="o">)].</span><span class="py">first</span><span class="o">()</span> | 
|  |  | 
|  | <span class="nf">println</span><span class="o">(</span><span class="n">s</span><span class="s">"without weight: mean = ${meanVal2}, sum = ${varianceVal2}"</span><span class="o">)</span></code></pre></div> | 
|  | <div><small>Find full example code at "examples/src/main/scala/org/apache/spark/examples/ml/SummarizerExample.scala" in the Spark repo.</small></div> | 
|  | </div> | 
|  |  | 
|  | <div data-lang="java"> | 
|  | <p>The following example demonstrates using <a href="api/java/org/apache/spark/ml/stat/Summarizer.html"><code class="language-plaintext highlighter-rouge">Summarizer</code></a> | 
|  | to compute the mean and variance for a vector column of the input dataframe, with and without a weight column.</p> | 
|  |  | 
|  | <div class="highlight"><pre class="codehilite"><code><span class="kn">import</span> <span class="nn">java.util.Arrays</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">java.util.List</span><span class="o">;</span> | 
|  |  | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.ml.linalg.Vector</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.ml.linalg.Vectors</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.ml.linalg.VectorUDT</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.ml.stat.Summarizer</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.DataTypes</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.Metadata</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.StructField</span><span class="o">;</span> | 
|  | <span class="kn">import</span> <span class="nn">org.apache.spark.sql.types.StructType</span><span class="o">;</span> | 
|  |  | 
|  | <span class="nc">List</span><span class="o"><</span><span class="nc">Row</span><span class="o">></span> <span class="n">data</span> <span class="o">=</span> <span class="nc">Arrays</span><span class="o">.</span><span class="na">asList</span><span class="o">(</span> | 
|  | <span class="nc">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">2.0</span><span class="o">,</span> <span class="mf">3.0</span><span class="o">,</span> <span class="mf">5.0</span><span class="o">),</span> <span class="mf">1.0</span><span class="o">),</span> | 
|  | <span class="nc">RowFactory</span><span class="o">.</span><span class="na">create</span><span class="o">(</span><span class="nc">Vectors</span><span class="o">.</span><span class="na">dense</span><span class="o">(</span><span class="mf">4.0</span><span class="o">,</span> <span class="mf">6.0</span><span class="o">,</span> <span class="mf">7.0</span><span class="o">),</span> <span class="mf">2.0</span><span class="o">)</span> | 
|  | <span class="o">);</span> | 
|  |  | 
|  | <span class="nc">StructType</span> <span class="n">schema</span> <span class="o">=</span> <span class="k">new</span> <span class="nc">StructType</span><span class="o">(</span><span class="k">new</span> <span class="nc">StructField</span><span class="o">[]{</span> | 
|  | <span class="k">new</span> <span class="nf">StructField</span><span class="o">(</span><span class="s">"features"</span><span class="o">,</span> <span class="k">new</span> <span class="nc">VectorUDT</span><span class="o">(),</span> <span class="kc">false</span><span class="o">,</span> <span class="nc">Metadata</span><span class="o">.</span><span class="na">empty</span><span class="o">()),</span> | 
|  | <span class="k">new</span> <span class="nf">StructField</span><span class="o">(</span><span class="s">"weight"</span><span class="o">,</span> <span class="nc">DataTypes</span><span class="o">.</span><span class="na">DoubleType</span><span class="o">,</span> <span class="kc">false</span><span class="o">,</span> <span class="nc">Metadata</span><span class="o">.</span><span class="na">empty</span><span class="o">())</span> | 
|  | <span class="o">});</span> | 
|  |  | 
|  | <span class="nc">Dataset</span><span class="o"><</span><span class="nc">Row</span><span class="o">></span> <span class="n">df</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="na">createDataFrame</span><span class="o">(</span><span class="n">data</span><span class="o">,</span> <span class="n">schema</span><span class="o">);</span> | 
|  |  | 
|  | <span class="nc">Row</span> <span class="n">result1</span> <span class="o">=</span> <span class="n">df</span><span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="nc">Summarizer</span><span class="o">.</span><span class="na">metrics</span><span class="o">(</span><span class="s">"mean"</span><span class="o">,</span> <span class="s">"variance"</span><span class="o">)</span> | 
|  | <span class="o">.</span><span class="na">summary</span><span class="o">(</span><span class="k">new</span> <span class="nc">Column</span><span class="o">(</span><span class="s">"features"</span><span class="o">),</span> <span class="k">new</span> <span class="nc">Column</span><span class="o">(</span><span class="s">"weight"</span><span class="o">)).</span><span class="na">as</span><span class="o">(</span><span class="s">"summary"</span><span class="o">))</span> | 
|  | <span class="o">.</span><span class="na">select</span><span class="o">(</span><span class="s">"summary.mean"</span><span class="o">,</span> <span class="s">"summary.variance"</span><span class="o">).</span><span class="na">first</span><span class="o">();</span> | 
|  | <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"with weight: mean = "</span> <span class="o">+</span> <span class="n">result1</span><span class="o">.<</span><span class="nc">Vector</span><span class="o">></span><span class="n">getAs</span><span class="o">(</span><span class="mi">0</span><span class="o">).</span><span class="na">toString</span><span class="o">()</span> <span class="o">+</span> | 
|  | <span class="s">", variance = "</span> <span class="o">+</span> <span class="n">result1</span><span class="o">.<</span><span class="nc">Vector</span><span class="o">></span><span class="n">getAs</span><span class="o">(</span><span class="mi">1</span><span class="o">).</span><span class="na">toString</span><span class="o">());</span> | 
|  |  | 
|  | <span class="nc">Row</span> <span class="n">result2</span> <span class="o">=</span> <span class="n">df</span><span class="o">.</span><span class="na">select</span><span class="o">(</span> | 
|  | <span class="nc">Summarizer</span><span class="o">.</span><span class="na">mean</span><span class="o">(</span><span class="k">new</span> <span class="nc">Column</span><span class="o">(</span><span class="s">"features"</span><span class="o">)),</span> | 
|  | <span class="nc">Summarizer</span><span class="o">.</span><span class="na">variance</span><span class="o">(</span><span class="k">new</span> <span class="nc">Column</span><span class="o">(</span><span class="s">"features"</span><span class="o">))</span> | 
|  | <span class="o">).</span><span class="na">first</span><span class="o">();</span> | 
|  | <span class="nc">System</span><span class="o">.</span><span class="na">out</span><span class="o">.</span><span class="na">println</span><span class="o">(</span><span class="s">"without weight: mean = "</span> <span class="o">+</span> <span class="n">result2</span><span class="o">.<</span><span class="nc">Vector</span><span class="o">></span><span class="n">getAs</span><span class="o">(</span><span class="mi">0</span><span class="o">).</span><span class="na">toString</span><span class="o">()</span> <span class="o">+</span> | 
|  | <span class="s">", variance = "</span> <span class="o">+</span> <span class="n">result2</span><span class="o">.<</span><span class="nc">Vector</span><span class="o">></span><span class="n">getAs</span><span class="o">(</span><span class="mi">1</span><span class="o">).</span><span class="na">toString</span><span class="o">());</span></code></pre></div> | 
|  | <div><small>Find full example code at "examples/src/main/java/org/apache/spark/examples/ml/JavaSummarizerExample.java" in the Spark repo.</small></div> | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <!-- /container --> | 
|  | </div> | 
|  |  | 
|  | <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/dist/js/bootstrap.bundle.min.js" | 
|  | integrity="sha384-MrcW6ZMFYlzcLA8Nl+NtUVF0sA7MsXsP1UyJoMp4YLEuNSfAP+JcXn/tWtIaxVXM" | 
|  | crossorigin="anonymous"></script> | 
|  | <script src="https://code.jquery.com/jquery.js"></script> | 
|  |  | 
|  | <script src="/js/vendor/anchor.min.js"></script> | 
|  | <script src="/js/main.js"></script> | 
|  |  | 
|  | <script type="text/javascript" src="https://cdn.jsdelivr.net/npm/docsearch.js@2/dist/cdn/docsearch.min.js"></script> | 
|  | <script type="text/javascript"> | 
|  | // DocSearch is entirely free and automated. DocSearch is built in two parts: | 
|  | // 1. a crawler which we run on our own infrastructure every 24 hours. It follows every link | 
|  | //    in your website and extract content from every page it traverses. It then pushes this | 
|  | //    content to an Algolia index. | 
|  | // 2. a JavaScript snippet to be inserted in your website that will bind this Algolia index | 
|  | //    to your search input and display its results in a dropdown UI. If you want to find more | 
|  | //    details on how works DocSearch, check the docs of DocSearch. | 
|  | docsearch({ | 
|  | apiKey: 'd62f962a82bc9abb53471cb7b89da35e', | 
|  | appId: 'RAI69RXRSK', | 
|  | indexName: 'apache_spark', | 
|  | inputSelector: '#docsearch-input', | 
|  | enhancedSearchInput: true, | 
|  | algoliaOptions: { | 
|  | 'facetFilters': ["version:4.0.0-preview2"] | 
|  | }, | 
|  | debug: false // Set debug to true if you want to inspect the dropdown | 
|  | }); | 
|  |  | 
|  | </script> | 
|  |  | 
|  | <!-- MathJax Section --> | 
|  | <script type="text/x-mathjax-config"> | 
|  | MathJax.Hub.Config({ | 
|  | TeX: { equationNumbers: { autoNumber: "AMS" } } | 
|  | }); | 
|  | </script> | 
|  | <script> | 
|  | // Note that we load MathJax this way to work with local file (file://), HTTP and HTTPS. | 
|  | // We could use "//cdn.mathjax...", but that won't support "file://". | 
|  | (function(d, script) { | 
|  | script = d.createElement('script'); | 
|  | script.type = 'text/javascript'; | 
|  | script.async = true; | 
|  | script.onload = function(){ | 
|  | MathJax.Hub.Config({ | 
|  | tex2jax: { | 
|  | inlineMath: [ ["$", "$"], ["\\\\(","\\\\)"] ], | 
|  | displayMath: [ ["$$","$$"], ["\\[", "\\]"] ], | 
|  | processEscapes: true, | 
|  | skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'] | 
|  | } | 
|  | }); | 
|  | }; | 
|  | script.src = ('https:' == document.location.protocol ? 'https://' : 'http://') + | 
|  | 'cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js' + | 
|  | '?config=TeX-AMS-MML_HTMLorMML'; | 
|  | d.getElementsByTagName('head')[0].appendChild(script); | 
|  | }(document)); | 
|  | </script> | 
|  | </body> | 
|  | </html> |