|  |  | 
|  |  | 
|  | <!DOCTYPE html> | 
|  |  | 
|  |  | 
|  | <html > | 
|  |  | 
|  | <head> | 
|  | <meta charset="utf-8" /> | 
|  | <meta name="viewport" content="width=device-width, initial-scale=1.0" /> | 
|  | <title>pyspark.pandas.mlflow — PySpark 4.0.0-preview2 documentation</title> | 
|  |  | 
|  |  | 
|  |  | 
|  | <script data-cfasync="false"> | 
|  | document.documentElement.dataset.mode = localStorage.getItem("mode") || ""; | 
|  | document.documentElement.dataset.theme = localStorage.getItem("theme") || "light"; | 
|  | </script> | 
|  |  | 
|  | <!-- Loaded before other Sphinx assets --> | 
|  | <link href="../../../_static/styles/theme.css?digest=e353d410970836974a52" rel="stylesheet" /> | 
|  | <link href="../../../_static/styles/bootstrap.css?digest=e353d410970836974a52" rel="stylesheet" /> | 
|  | <link href="../../../_static/styles/pydata-sphinx-theme.css?digest=e353d410970836974a52" rel="stylesheet" /> | 
|  |  | 
|  |  | 
|  | <link href="../../../_static/vendor/fontawesome/6.1.2/css/all.min.css?digest=e353d410970836974a52" rel="stylesheet" /> | 
|  | <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2" /> | 
|  | <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2" /> | 
|  | <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2" /> | 
|  |  | 
|  | <link rel="stylesheet" type="text/css" href="../../../_static/pygments.css" /> | 
|  | <link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" /> | 
|  | <link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" /> | 
|  |  | 
|  | <!-- Pre-loaded scripts that we'll load fully later --> | 
|  | <link rel="preload" as="script" href="../../../_static/scripts/bootstrap.js?digest=e353d410970836974a52" /> | 
|  | <link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52" /> | 
|  |  | 
|  | <script data-url_root="../../../" id="documentation_options" src="../../../_static/documentation_options.js"></script> | 
|  | <script src="../../../_static/jquery.js"></script> | 
|  | <script src="../../../_static/underscore.js"></script> | 
|  | <script src="../../../_static/doctools.js"></script> | 
|  | <script src="../../../_static/clipboard.min.js"></script> | 
|  | <script src="../../../_static/copybutton.js"></script> | 
|  | <script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script> | 
|  | <script>DOCUMENTATION_OPTIONS.pagename = '_modules/pyspark/pandas/mlflow';</script> | 
|  | <link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/pandas/mlflow.html" /> | 
|  | <link rel="search" title="Search" href="../../../search.html" /> | 
|  | <meta name="viewport" content="width=device-width, initial-scale=1" /> | 
|  | <meta name="docsearch:language" content="None"> | 
|  |  | 
|  |  | 
|  | <!-- Matomo --> | 
|  | <script type="text/javascript"> | 
|  | var _paq = window._paq = window._paq || []; | 
|  | /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ | 
|  | _paq.push(["disableCookies"]); | 
|  | _paq.push(['trackPageView']); | 
|  | _paq.push(['enableLinkTracking']); | 
|  | (function() { | 
|  | var u="https://analytics.apache.org/"; | 
|  | _paq.push(['setTrackerUrl', u+'matomo.php']); | 
|  | _paq.push(['setSiteId', '40']); | 
|  | var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; | 
|  | g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); | 
|  | })(); | 
|  | </script> | 
|  | <!-- End Matomo Code --> | 
|  |  | 
|  | </head> | 
|  |  | 
|  |  | 
|  | <body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode=""> | 
|  |  | 
|  |  | 
|  |  | 
|  | <a class="skip-link" href="#main-content">Skip to main content</a> | 
|  |  | 
|  | <input type="checkbox" | 
|  | class="sidebar-toggle" | 
|  | name="__primary" | 
|  | id="__primary"/> | 
|  | <label class="overlay overlay-primary" for="__primary"></label> | 
|  |  | 
|  | <input type="checkbox" | 
|  | class="sidebar-toggle" | 
|  | name="__secondary" | 
|  | id="__secondary"/> | 
|  | <label class="overlay overlay-secondary" for="__secondary"></label> | 
|  |  | 
|  | <div class="search-button__wrapper"> | 
|  | <div class="search-button__overlay"></div> | 
|  | <div class="search-button__search-container"> | 
|  | <form class="bd-search d-flex align-items-center" | 
|  | action="../../../search.html" | 
|  | method="get"> | 
|  | <i class="fa-solid fa-magnifying-glass"></i> | 
|  | <input type="search" | 
|  | class="form-control" | 
|  | name="q" | 
|  | id="search-input" | 
|  | placeholder="Search the docs ..." | 
|  | aria-label="Search the docs ..." | 
|  | autocomplete="off" | 
|  | autocorrect="off" | 
|  | autocapitalize="off" | 
|  | spellcheck="false"/> | 
|  | <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span> | 
|  | </form></div> | 
|  | </div> | 
|  |  | 
|  | <nav class="bd-header navbar navbar-expand-lg bd-navbar"> | 
|  | <div class="bd-header__inner bd-page-width"> | 
|  | <label class="sidebar-toggle primary-toggle" for="__primary"> | 
|  | <span class="fa-solid fa-bars"></span> | 
|  | </label> | 
|  |  | 
|  | <div class="navbar-header-items__start"> | 
|  |  | 
|  | <div class="navbar-item"> | 
|  |  | 
|  |  | 
|  | <a class="navbar-brand logo" href="../../../index.html"> | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | <img src="https://spark.apache.org/images/spark-logo.png" class="logo__image only-light" alt="Logo image"/> | 
|  | <script>document.write(`<img src="https://spark.apache.org/images/spark-logo-rev.svg" class="logo__image only-dark" alt="Logo image"/>`);</script> | 
|  |  | 
|  |  | 
|  | </a></div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <div class="col-lg-9 navbar-header-items"> | 
|  |  | 
|  | <div class="me-auto navbar-header-items__center"> | 
|  |  | 
|  | <div class="navbar-item"><nav class="navbar-nav"> | 
|  | <p class="sidebar-header-items__title" | 
|  | role="heading" | 
|  | aria-level="1" | 
|  | aria-label="Site Navigation"> | 
|  | Site Navigation | 
|  | </p> | 
|  | <ul class="bd-navbar-elements navbar-nav"> | 
|  |  | 
|  | <li class="nav-item"> | 
|  | <a class="nav-link nav-internal" href="../../../index.html"> | 
|  | Overview | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  | <li class="nav-item"> | 
|  | <a class="nav-link nav-internal" href="../../../getting_started/index.html"> | 
|  | Getting Started | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  | <li class="nav-item"> | 
|  | <a class="nav-link nav-internal" href="../../../user_guide/index.html"> | 
|  | User Guides | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  | <li class="nav-item"> | 
|  | <a class="nav-link nav-internal" href="../../../reference/index.html"> | 
|  | API Reference | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  | <li class="nav-item"> | 
|  | <a class="nav-link nav-internal" href="../../../development/index.html"> | 
|  | Development | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  | <li class="nav-item"> | 
|  | <a class="nav-link nav-internal" href="../../../migration_guide/index.html"> | 
|  | Migration Guides | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  | </ul> | 
|  | </nav></div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <div class="navbar-header-items__end"> | 
|  |  | 
|  | <div class="navbar-item navbar-persistent--container"> | 
|  |  | 
|  | <script> | 
|  | document.write(` | 
|  | <button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> | 
|  | <i class="fa-solid fa-magnifying-glass"></i> | 
|  | </button> | 
|  | `); | 
|  | </script> | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <div class="navbar-item"><!-- | 
|  | Licensed to the Apache Software Foundation (ASF) under one or more | 
|  | contributor license agreements.  See the NOTICE file distributed with | 
|  | this work for additional information regarding copyright ownership. | 
|  | The ASF licenses this file to You under the Apache License, Version 2.0 | 
|  | (the "License"); you may not use this file except in compliance with | 
|  | the License.  You may obtain a copy of the License at | 
|  |  | 
|  | http://www.apache.org/licenses/LICENSE-2.0 | 
|  |  | 
|  | Unless required by applicable law or agreed to in writing, software | 
|  | distributed under the License is distributed on an "AS IS" BASIS, | 
|  | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | See the License for the specific language governing permissions and | 
|  | limitations under the License. | 
|  | --> | 
|  |  | 
|  | <div id="version-button" class="dropdown"> | 
|  | <button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown"> | 
|  | 4.0.0-preview2 | 
|  | <span class="caret"></span> | 
|  | </button> | 
|  | <div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button"> | 
|  | <!-- dropdown will be populated by javascript on page load --> | 
|  | </div> | 
|  | </div> | 
|  |  | 
|  | <script type="text/javascript"> | 
|  | // Function to construct the target URL from the JSON components | 
|  | function buildURL(entry) { | 
|  | var template = "https://spark.apache.org/docs/{version}/api/python/index.html";  // supplied by jinja | 
|  | template = template.replace("{version}", entry.version); | 
|  | return template; | 
|  | } | 
|  |  | 
|  | // Function to check if corresponding page path exists in other version of docs | 
|  | // and, if so, go there instead of the homepage of the other docs version | 
|  | function checkPageExistsAndRedirect(event) { | 
|  | const currentFilePath = "_modules/pyspark/pandas/mlflow.html", | 
|  | otherDocsHomepage = event.target.getAttribute("href"); | 
|  | let tryUrl = `${otherDocsHomepage}${currentFilePath}`; | 
|  | $.ajax({ | 
|  | type: 'HEAD', | 
|  | url: tryUrl, | 
|  | // if the page exists, go there | 
|  | success: function() { | 
|  | location.href = tryUrl; | 
|  | } | 
|  | }).fail(function() { | 
|  | location.href = otherDocsHomepage; | 
|  | }); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Function to populate the version switcher | 
|  | (function () { | 
|  | // get JSON config | 
|  | $.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) { | 
|  | // create the nodes first (before AJAX calls) to ensure the order is | 
|  | // correct (for now, links will go to doc version homepage) | 
|  | $.each(data, function(index, entry) { | 
|  | // if no custom name specified (e.g., "latest"), use version string | 
|  | if (!("name" in entry)) { | 
|  | entry.name = entry.version; | 
|  | } | 
|  | // construct the appropriate URL, and add it to the dropdown | 
|  | entry.url = buildURL(entry); | 
|  | const node = document.createElement("a"); | 
|  | node.setAttribute("class", "list-group-item list-group-item-action py-1"); | 
|  | node.setAttribute("href", `${entry.url}`); | 
|  | node.textContent = `${entry.name}`; | 
|  | node.onclick = checkPageExistsAndRedirect; | 
|  | $("#version_switcher").append(node); | 
|  | }); | 
|  | }); | 
|  | })(); | 
|  | </script></div> | 
|  |  | 
|  | <div class="navbar-item"> | 
|  | <script> | 
|  | document.write(` | 
|  | <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> | 
|  | <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span> | 
|  | <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span> | 
|  | <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span> | 
|  | </button> | 
|  | `); | 
|  | </script></div> | 
|  |  | 
|  | <div class="navbar-item"><ul class="navbar-icon-links navbar-nav" | 
|  | aria-label="Icon Links"> | 
|  | <li class="nav-item"> | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | <a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span> | 
|  | <label class="sr-only">GitHub</label></a> | 
|  | </li> | 
|  | <li class="nav-item"> | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | <a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span> | 
|  | <label class="sr-only">PyPI</label></a> | 
|  | </li> | 
|  | </ul></div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <div class="navbar-persistent--mobile"> | 
|  | <script> | 
|  | document.write(` | 
|  | <button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> | 
|  | <i class="fa-solid fa-magnifying-glass"></i> | 
|  | </button> | 
|  | `); | 
|  | </script> | 
|  | </div> | 
|  |  | 
|  |  | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </nav> | 
|  |  | 
|  | <div class="bd-container"> | 
|  | <div class="bd-container__inner bd-page-width"> | 
|  |  | 
|  | <div class="bd-sidebar-primary bd-sidebar hide-on-wide"> | 
|  |  | 
|  |  | 
|  |  | 
|  | <div class="sidebar-header-items sidebar-primary__section"> | 
|  |  | 
|  |  | 
|  | <div class="sidebar-header-items__center"> | 
|  |  | 
|  | <div class="navbar-item"><nav class="navbar-nav"> | 
|  | <p class="sidebar-header-items__title" | 
|  | role="heading" | 
|  | aria-level="1" | 
|  | aria-label="Site Navigation"> | 
|  | Site Navigation | 
|  | </p> | 
|  | <ul class="bd-navbar-elements navbar-nav"> | 
|  |  | 
|  | <li class="nav-item"> | 
|  | <a class="nav-link nav-internal" href="../../../index.html"> | 
|  | Overview | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  | <li class="nav-item"> | 
|  | <a class="nav-link nav-internal" href="../../../getting_started/index.html"> | 
|  | Getting Started | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  | <li class="nav-item"> | 
|  | <a class="nav-link nav-internal" href="../../../user_guide/index.html"> | 
|  | User Guides | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  | <li class="nav-item"> | 
|  | <a class="nav-link nav-internal" href="../../../reference/index.html"> | 
|  | API Reference | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  | <li class="nav-item"> | 
|  | <a class="nav-link nav-internal" href="../../../development/index.html"> | 
|  | Development | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  |  | 
|  | <li class="nav-item"> | 
|  | <a class="nav-link nav-internal" href="../../../migration_guide/index.html"> | 
|  | Migration Guides | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  | </ul> | 
|  | </nav></div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  |  | 
|  | <div class="sidebar-header-items__end"> | 
|  |  | 
|  | <div class="navbar-item"><!-- | 
|  | Licensed to the Apache Software Foundation (ASF) under one or more | 
|  | contributor license agreements.  See the NOTICE file distributed with | 
|  | this work for additional information regarding copyright ownership. | 
|  | The ASF licenses this file to You under the Apache License, Version 2.0 | 
|  | (the "License"); you may not use this file except in compliance with | 
|  | the License.  You may obtain a copy of the License at | 
|  |  | 
|  | http://www.apache.org/licenses/LICENSE-2.0 | 
|  |  | 
|  | Unless required by applicable law or agreed to in writing, software | 
|  | distributed under the License is distributed on an "AS IS" BASIS, | 
|  | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | See the License for the specific language governing permissions and | 
|  | limitations under the License. | 
|  | --> | 
|  |  | 
|  | <div id="version-button" class="dropdown"> | 
|  | <button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown"> | 
|  | 4.0.0-preview2 | 
|  | <span class="caret"></span> | 
|  | </button> | 
|  | <div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button"> | 
|  | <!-- dropdown will be populated by javascript on page load --> | 
|  | </div> | 
|  | </div> | 
|  |  | 
|  | <script type="text/javascript"> | 
|  | // Function to construct the target URL from the JSON components | 
|  | function buildURL(entry) { | 
|  | var template = "https://spark.apache.org/docs/{version}/api/python/index.html";  // supplied by jinja | 
|  | template = template.replace("{version}", entry.version); | 
|  | return template; | 
|  | } | 
|  |  | 
|  | // Function to check if corresponding page path exists in other version of docs | 
|  | // and, if so, go there instead of the homepage of the other docs version | 
|  | function checkPageExistsAndRedirect(event) { | 
|  | const currentFilePath = "_modules/pyspark/pandas/mlflow.html", | 
|  | otherDocsHomepage = event.target.getAttribute("href"); | 
|  | let tryUrl = `${otherDocsHomepage}${currentFilePath}`; | 
|  | $.ajax({ | 
|  | type: 'HEAD', | 
|  | url: tryUrl, | 
|  | // if the page exists, go there | 
|  | success: function() { | 
|  | location.href = tryUrl; | 
|  | } | 
|  | }).fail(function() { | 
|  | location.href = otherDocsHomepage; | 
|  | }); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Function to populate the version switcher | 
|  | (function () { | 
|  | // get JSON config | 
|  | $.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) { | 
|  | // create the nodes first (before AJAX calls) to ensure the order is | 
|  | // correct (for now, links will go to doc version homepage) | 
|  | $.each(data, function(index, entry) { | 
|  | // if no custom name specified (e.g., "latest"), use version string | 
|  | if (!("name" in entry)) { | 
|  | entry.name = entry.version; | 
|  | } | 
|  | // construct the appropriate URL, and add it to the dropdown | 
|  | entry.url = buildURL(entry); | 
|  | const node = document.createElement("a"); | 
|  | node.setAttribute("class", "list-group-item list-group-item-action py-1"); | 
|  | node.setAttribute("href", `${entry.url}`); | 
|  | node.textContent = `${entry.name}`; | 
|  | node.onclick = checkPageExistsAndRedirect; | 
|  | $("#version_switcher").append(node); | 
|  | }); | 
|  | }); | 
|  | })(); | 
|  | </script></div> | 
|  |  | 
|  | <div class="navbar-item"> | 
|  | <script> | 
|  | document.write(` | 
|  | <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> | 
|  | <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span> | 
|  | <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span> | 
|  | <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span> | 
|  | </button> | 
|  | `); | 
|  | </script></div> | 
|  |  | 
|  | <div class="navbar-item"><ul class="navbar-icon-links navbar-nav" | 
|  | aria-label="Icon Links"> | 
|  | <li class="nav-item"> | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | <a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span> | 
|  | <label class="sr-only">GitHub</label></a> | 
|  | </li> | 
|  | <li class="nav-item"> | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | <a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span> | 
|  | <label class="sr-only">PyPI</label></a> | 
|  | </li> | 
|  | </ul></div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <div class="sidebar-primary-items__end sidebar-primary__section"> | 
|  | </div> | 
|  |  | 
|  | <div id="rtd-footer-container"></div> | 
|  |  | 
|  |  | 
|  | </div> | 
|  |  | 
|  | <main id="main-content" class="bd-main"> | 
|  |  | 
|  |  | 
|  | <div class="bd-content"> | 
|  | <div class="bd-article-container"> | 
|  |  | 
|  | <div class="bd-header-article"> | 
|  | <div class="header-article-items header-article__inner"> | 
|  |  | 
|  | <div class="header-article-items__start"> | 
|  |  | 
|  | <div class="header-article-item"> | 
|  |  | 
|  |  | 
|  |  | 
|  | <nav aria-label="Breadcrumbs"> | 
|  | <ul class="bd-breadcrumbs" role="navigation" aria-label="Breadcrumb"> | 
|  |  | 
|  | <li class="breadcrumb-item breadcrumb-home"> | 
|  | <a href="../../../index.html" class="nav-link" aria-label="Home"> | 
|  | <i class="fa-solid fa-home"></i> | 
|  | </a> | 
|  | </li> | 
|  |  | 
|  | <li class="breadcrumb-item"><a href="../../index.html" class="nav-link">Module code</a></li> | 
|  |  | 
|  | <li class="breadcrumb-item active" aria-current="page">pyspark.pandas.mlflow</li> | 
|  | </ul> | 
|  | </nav> | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  | </div> | 
|  | </div> | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | <div id="searchbox"></div> | 
|  | <article class="bd-article" role="main"> | 
|  |  | 
|  | <h1>Source code for pyspark.pandas.mlflow</h1><div class="highlight"><pre> | 
|  | <span></span><span class="c1">#</span> | 
|  | <span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span> | 
|  | <span class="c1"># contributor license agreements.  See the NOTICE file distributed with</span> | 
|  | <span class="c1"># this work for additional information regarding copyright ownership.</span> | 
|  | <span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span> | 
|  | <span class="c1"># (the "License"); you may not use this file except in compliance with</span> | 
|  | <span class="c1"># the License.  You may obtain a copy of the License at</span> | 
|  | <span class="c1">#</span> | 
|  | <span class="c1">#    http://www.apache.org/licenses/LICENSE-2.0</span> | 
|  | <span class="c1">#</span> | 
|  | <span class="c1"># Unless required by applicable law or agreed to in writing, software</span> | 
|  | <span class="c1"># distributed under the License is distributed on an "AS IS" BASIS,</span> | 
|  | <span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span> | 
|  | <span class="c1"># See the License for the specific language governing permissions and</span> | 
|  | <span class="c1"># limitations under the License.</span> | 
|  | <span class="c1">#</span> | 
|  |  | 
|  | <span class="sd">"""</span> | 
|  | <span class="sd">MLflow-related functions to load models and apply them to pandas-on-Spark dataframes.</span> | 
|  | <span class="sd">"""</span> | 
|  | <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">List</span><span class="p">,</span> <span class="n">Union</span> | 
|  | <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Any</span> | 
|  |  | 
|  | <span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span> | 
|  | <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> | 
|  |  | 
|  | <span class="kn">from</span> <span class="nn">pyspark.sql.types</span> <span class="kn">import</span> <span class="n">DataType</span> | 
|  | <span class="kn">from</span> <span class="nn">pyspark.sql.functions</span> <span class="kn">import</span> <span class="n">struct</span> | 
|  | <span class="kn">from</span> <span class="nn">pyspark.pandas._typing</span> <span class="kn">import</span> <span class="n">Label</span><span class="p">,</span> <span class="n">Dtype</span> | 
|  | <span class="kn">from</span> <span class="nn">pyspark.pandas.utils</span> <span class="kn">import</span> <span class="n">lazy_property</span><span class="p">,</span> <span class="n">default_session</span> | 
|  | <span class="kn">from</span> <span class="nn">pyspark.pandas.frame</span> <span class="kn">import</span> <span class="n">DataFrame</span> | 
|  | <span class="kn">from</span> <span class="nn">pyspark.pandas.series</span> <span class="kn">import</span> <span class="n">Series</span><span class="p">,</span> <span class="n">first_series</span> | 
|  | <span class="kn">from</span> <span class="nn">pyspark.pandas.typedef</span> <span class="kn">import</span> <span class="n">as_spark_type</span> | 
|  |  | 
|  | <span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span><span class="s2">"PythonModelWrapper"</span><span class="p">,</span> <span class="s2">"load_model"</span><span class="p">]</span> | 
|  |  | 
|  |  | 
|  | <div class="viewcode-block" id="PythonModelWrapper"><a class="viewcode-back" href="../../../reference/pyspark.pandas/api/pyspark.pandas.mlflow.PythonModelWrapper.html#pyspark.pandas.mlflow.PythonModelWrapper">[docs]</a><span class="k">class</span> <span class="nc">PythonModelWrapper</span><span class="p">:</span> | 
|  | <span class="w">    </span><span class="sd">"""</span> | 
|  | <span class="sd">    A wrapper around MLflow's Python object model.</span> | 
|  |  | 
|  | <span class="sd">    This wrapper acts as a predictor on pandas-on-Spark</span> | 
|  |  | 
|  | <span class="sd">    """</span> | 
|  |  | 
|  | <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">model_uri</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">return_type_hint</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">type</span><span class="p">,</span> <span class="n">Dtype</span><span class="p">]):</span> | 
|  | <span class="bp">self</span><span class="o">.</span><span class="n">_model_uri</span> <span class="o">=</span> <span class="n">model_uri</span> | 
|  | <span class="bp">self</span><span class="o">.</span><span class="n">_return_type_hint</span> <span class="o">=</span> <span class="n">return_type_hint</span> | 
|  |  | 
|  | <span class="nd">@lazy_property</span> | 
|  | <span class="k">def</span> <span class="nf">_return_type</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="n">DataType</span><span class="p">:</span> | 
|  | <span class="n">hint</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_return_type_hint</span> | 
|  | <span class="c1"># The logic is simple for now, because it corresponds to the default</span> | 
|  | <span class="c1"># case: continuous predictions</span> | 
|  | <span class="c1"># TODO: do something smarter, for example when there is a sklearn.Classifier (it should</span> | 
|  | <span class="c1"># return an integer or a categorical)</span> | 
|  | <span class="c1"># We can do the same for pytorch/tensorflow/keras models by looking at the output types.</span> | 
|  | <span class="c1"># However, this is probably better done in mlflow than here.</span> | 
|  | <span class="k">if</span> <span class="n">hint</span> <span class="o">==</span> <span class="s2">"infer"</span> <span class="ow">or</span> <span class="ow">not</span> <span class="n">hint</span><span class="p">:</span> | 
|  | <span class="n">hint</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">float64</span> | 
|  | <span class="k">return</span> <span class="n">as_spark_type</span><span class="p">(</span><span class="n">hint</span><span class="p">)</span> | 
|  |  | 
|  | <span class="nd">@lazy_property</span> | 
|  | <span class="k">def</span> <span class="nf">_model</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="n">Any</span><span class="p">:</span> | 
|  | <span class="w">        </span><span class="sd">"""</span> | 
|  | <span class="sd">        The return object has to follow the API of mlflow.pyfunc.PythonModel.</span> | 
|  | <span class="sd">        """</span> | 
|  | <span class="kn">from</span> <span class="nn">mlflow</span> <span class="kn">import</span> <span class="n">pyfunc</span> | 
|  |  | 
|  | <span class="k">return</span> <span class="n">pyfunc</span><span class="o">.</span><span class="n">load_model</span><span class="p">(</span><span class="n">model_uri</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_model_uri</span><span class="p">)</span> | 
|  |  | 
|  | <span class="nd">@lazy_property</span> | 
|  | <span class="k">def</span> <span class="nf">_model_udf</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="n">Any</span><span class="p">:</span> | 
|  | <span class="kn">from</span> <span class="nn">mlflow</span> <span class="kn">import</span> <span class="n">pyfunc</span> | 
|  |  | 
|  | <span class="n">spark</span> <span class="o">=</span> <span class="n">default_session</span><span class="p">()</span> | 
|  | <span class="k">return</span> <span class="n">pyfunc</span><span class="o">.</span><span class="n">spark_udf</span><span class="p">(</span><span class="n">spark</span><span class="p">,</span> <span class="n">model_uri</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_model_uri</span><span class="p">,</span> <span class="n">result_type</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_return_type</span><span class="p">)</span> | 
|  |  | 
|  | <span class="k">def</span> <span class="fm">__str__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> | 
|  | <span class="k">return</span> <span class="s2">"PythonModelWrapper(</span><span class="si">{}</span><span class="s2">)"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">str</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_model</span><span class="p">))</span> | 
|  |  | 
|  | <span class="k">def</span> <span class="fm">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> | 
|  | <span class="k">return</span> <span class="s2">"PythonModelWrapper(</span><span class="si">{}</span><span class="s2">)"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">repr</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_model</span><span class="p">))</span> | 
|  |  | 
|  | <span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">data</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">])</span> <span class="o">-></span> <span class="n">Union</span><span class="p">[</span><span class="n">Series</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">]:</span> | 
|  | <span class="w">        </span><span class="sd">"""</span> | 
|  | <span class="sd">        Returns a prediction on the data.</span> | 
|  |  | 
|  | <span class="sd">        If the data is a pandas-on-Spark DataFrame, the return is a pandas-on-Spark Series.</span> | 
|  |  | 
|  | <span class="sd">        If the data is a pandas Dataframe, the return is the expected output of the underlying</span> | 
|  | <span class="sd">        pyfunc object (typically a pandas Series or a numpy array).</span> | 
|  | <span class="sd">        """</span> | 
|  | <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">):</span> | 
|  | <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_model</span><span class="o">.</span><span class="n">predict</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> | 
|  | <span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">DataFrame</span><span class="p">):</span> | 
|  | <span class="n">s</span> <span class="o">=</span> <span class="n">struct</span><span class="p">(</span><span class="o">*</span><span class="n">data</span><span class="o">.</span><span class="n">columns</span><span class="p">)</span> | 
|  | <span class="n">return_col</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_model_udf</span><span class="p">(</span><span class="n">s</span><span class="p">)</span> | 
|  | <span class="n">column_labels</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">Label</span><span class="p">]</span> <span class="o">=</span> <span class="p">[</span> | 
|  | <span class="p">(</span><span class="n">col</span><span class="p">,)</span> <span class="k">for</span> <span class="n">col</span> <span class="ow">in</span> <span class="n">data</span><span class="o">.</span><span class="n">_internal</span><span class="o">.</span><span class="n">spark_frame</span><span class="o">.</span><span class="n">select</span><span class="p">(</span><span class="n">return_col</span><span class="p">)</span><span class="o">.</span><span class="n">columns</span> | 
|  | <span class="p">]</span> | 
|  | <span class="n">internal</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">_internal</span><span class="o">.</span><span class="n">copy</span><span class="p">(</span> | 
|  | <span class="n">column_labels</span><span class="o">=</span><span class="n">column_labels</span><span class="p">,</span> <span class="n">data_spark_columns</span><span class="o">=</span><span class="p">[</span><span class="n">return_col</span><span class="p">],</span> <span class="n">data_fields</span><span class="o">=</span><span class="kc">None</span> | 
|  | <span class="p">)</span> | 
|  | <span class="k">return</span> <span class="n">first_series</span><span class="p">(</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">internal</span><span class="p">))</span> | 
|  | <span class="k">else</span><span class="p">:</span> | 
|  | <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"unknown data type: </span><span class="si">{}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">data</span><span class="p">)</span><span class="o">.</span><span class="vm">__name__</span><span class="p">))</span></div> | 
|  |  | 
|  |  | 
|  | <div class="viewcode-block" id="load_model"><a class="viewcode-back" href="../../../reference/pyspark.pandas/api/pyspark.pandas.mlflow.load_model.html#pyspark.pandas.mlflow.load_model">[docs]</a><span class="k">def</span> <span class="nf">load_model</span><span class="p">(</span> | 
|  | <span class="n">model_uri</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> <span class="n">predict_type</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="nb">type</span><span class="p">,</span> <span class="n">Dtype</span><span class="p">]</span> <span class="o">=</span> <span class="s2">"infer"</span> | 
|  | <span class="p">)</span> <span class="o">-></span> <span class="n">PythonModelWrapper</span><span class="p">:</span> | 
|  | <span class="w">    </span><span class="sd">"""</span> | 
|  | <span class="sd">    Loads an MLflow model into a wrapper that can be used both for pandas and pandas-on-Spark</span> | 
|  | <span class="sd">    DataFrame.</span> | 
|  |  | 
|  | <span class="sd">    Parameters</span> | 
|  | <span class="sd">    ----------</span> | 
|  | <span class="sd">    model_uri : str</span> | 
|  | <span class="sd">        URI pointing to the model. See MLflow documentation for more details.</span> | 
|  | <span class="sd">    predict_type : a python basic type, a numpy basic type, a Spark type or 'infer'.</span> | 
|  | <span class="sd">       This is the return type that is expected when calling the predict function of the model.</span> | 
|  | <span class="sd">       If 'infer' is specified, the wrapper will attempt to automatically determine the return type</span> | 
|  | <span class="sd">       based on the model type.</span> | 
|  |  | 
|  | <span class="sd">    Returns</span> | 
|  | <span class="sd">    -------</span> | 
|  | <span class="sd">    PythonModelWrapper</span> | 
|  | <span class="sd">        A wrapper around MLflow PythonModel objects. This wrapper is expected to adhere to the</span> | 
|  | <span class="sd">        interface of mlflow.pyfunc.PythonModel.</span> | 
|  |  | 
|  | <span class="sd">    Examples</span> | 
|  | <span class="sd">    --------</span> | 
|  | <span class="sd">    Here is a full example that creates a model with scikit-learn and saves the model with</span> | 
|  | <span class="sd">     MLflow. The model is then loaded as a predictor that can be applied on a pandas-on-Spark</span> | 
|  | <span class="sd">     Dataframe.</span> | 
|  |  | 
|  | <span class="sd">    We first initialize our MLflow environment:</span> | 
|  |  | 
|  | <span class="sd">    >>> from mlflow.tracking import MlflowClient, set_tracking_uri</span> | 
|  | <span class="sd">    >>> import mlflow.sklearn</span> | 
|  | <span class="sd">    >>> from tempfile import mkdtemp</span> | 
|  | <span class="sd">    >>> d = mkdtemp("pandas_on_spark_mlflow")</span> | 
|  | <span class="sd">    >>> set_tracking_uri("file:%s"%d)</span> | 
|  | <span class="sd">    >>> client = MlflowClient()</span> | 
|  | <span class="sd">    >>> exp_id = mlflow.create_experiment("my_experiment")</span> | 
|  | <span class="sd">    >>> exp = mlflow.set_experiment("my_experiment")</span> | 
|  |  | 
|  | <span class="sd">    We aim at learning this numerical function using a simple linear regressor.</span> | 
|  |  | 
|  | <span class="sd">    >>> from sklearn.linear_model import LinearRegression</span> | 
|  | <span class="sd">    >>> train = pd.DataFrame({"x1": np.arange(8), "x2": np.arange(8)**2,</span> | 
|  | <span class="sd">    ...                       "y": np.log(2 + np.arange(8))})</span> | 
|  | <span class="sd">    >>> train_x = train[["x1", "x2"]]</span> | 
|  | <span class="sd">    >>> train_y = train[["y"]]</span> | 
|  | <span class="sd">    >>> with mlflow.start_run():</span> | 
|  | <span class="sd">    ...     lr = LinearRegression()</span> | 
|  | <span class="sd">    ...     lr.fit(train_x, train_y)</span> | 
|  | <span class="sd">    ...     mlflow.sklearn.log_model(lr, "model")</span> | 
|  | <span class="sd">    LinearRegression...</span> | 
|  |  | 
|  | <span class="sd">    Now that our model is logged using MLflow, we load it back and apply it on a pandas-on-Spark</span> | 
|  | <span class="sd">    dataframe:</span> | 
|  |  | 
|  | <span class="sd">    >>> from pyspark.pandas.mlflow import load_model</span> | 
|  | <span class="sd">    >>> run_info = client.search_runs(exp_id)[-1].info</span> | 
|  | <span class="sd">    >>> model = load_model("runs:/{run_id}/model".format(run_id=run_info.run_id))</span> | 
|  | <span class="sd">    >>> prediction_df = ps.DataFrame({"x1": [2.0], "x2": [4.0]})</span> | 
|  | <span class="sd">    >>> prediction_df["prediction"] = model.predict(prediction_df)</span> | 
|  | <span class="sd">    >>> prediction_df</span> | 
|  | <span class="sd">        x1   x2  prediction</span> | 
|  | <span class="sd">    0  2.0  4.0    1.355551</span> | 
|  |  | 
|  | <span class="sd">    The model also works on pandas DataFrames as expected:</span> | 
|  |  | 
|  | <span class="sd">    >>> model.predict(prediction_df[["x1", "x2"]].to_pandas())</span> | 
|  | <span class="sd">    array([[1.35555142]])</span> | 
|  |  | 
|  | <span class="sd">    Notes</span> | 
|  | <span class="sd">    -----</span> | 
|  | <span class="sd">    Currently, the model prediction can only be merged back with the existing dataframe.</span> | 
|  | <span class="sd">    Other columns must be manually joined.</span> | 
|  | <span class="sd">    For example, this code will not work:</span> | 
|  |  | 
|  | <span class="sd">    >>> df = ps.DataFrame({"x1": [2.0], "x2": [3.0], "z": [-1]})</span> | 
|  | <span class="sd">    >>> features = df[["x1", "x2"]]</span> | 
|  | <span class="sd">    >>> y = model.predict(features)</span> | 
|  | <span class="sd">    >>> # Works:</span> | 
|  | <span class="sd">    >>> features["y"] = y   # doctest: +SKIP</span> | 
|  | <span class="sd">    >>> # Will fail with a message about dataframes not aligned.</span> | 
|  | <span class="sd">    >>> df["y"] = y   # doctest: +SKIP</span> | 
|  |  | 
|  | <span class="sd">    A current workaround is to use the .merge() function, using the feature values</span> | 
|  | <span class="sd">    as merging keys.</span> | 
|  |  | 
|  | <span class="sd">    >>> features['y'] = y</span> | 
|  | <span class="sd">    >>> everything = df.merge(features, on=['x1', 'x2'])</span> | 
|  | <span class="sd">    >>> everything</span> | 
|  | <span class="sd">        x1   x2  z         y</span> | 
|  | <span class="sd">    0  2.0  3.0 -1  1.376932</span> | 
|  | <span class="sd">    """</span> | 
|  | <span class="k">return</span> <span class="n">PythonModelWrapper</span><span class="p">(</span><span class="n">model_uri</span><span class="p">,</span> <span class="n">predict_type</span><span class="p">)</span></div> | 
|  |  | 
|  |  | 
|  | <span class="k">def</span> <span class="nf">_test</span><span class="p">()</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> | 
|  | <span class="kn">import</span> <span class="nn">os</span> | 
|  | <span class="kn">import</span> <span class="nn">doctest</span> | 
|  | <span class="kn">import</span> <span class="nn">sys</span> | 
|  | <span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SparkSession</span> | 
|  | <span class="kn">import</span> <span class="nn">pyspark.pandas.mlflow</span> | 
|  |  | 
|  | <span class="n">os</span><span class="o">.</span><span class="n">chdir</span><span class="p">(</span><span class="n">os</span><span class="o">.</span><span class="n">environ</span><span class="p">[</span><span class="s2">"SPARK_HOME"</span><span class="p">])</span> | 
|  |  | 
|  | <span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">pandas</span><span class="o">.</span><span class="n">mlflow</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span> | 
|  | <span class="n">globs</span><span class="p">[</span><span class="s2">"ps"</span><span class="p">]</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">pandas</span> | 
|  | <span class="n">spark</span> <span class="o">=</span> <span class="p">(</span> | 
|  | <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">master</span><span class="p">(</span><span class="s2">"local[4]"</span><span class="p">)</span><span class="o">.</span><span class="n">appName</span><span class="p">(</span><span class="s2">"pyspark.pandas.mlflow tests"</span><span class="p">)</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span> | 
|  | <span class="p">)</span> | 
|  | <span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span> | 
|  | <span class="n">pyspark</span><span class="o">.</span><span class="n">pandas</span><span class="o">.</span><span class="n">mlflow</span><span class="p">,</span> | 
|  | <span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span> | 
|  | <span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span> <span class="o">|</span> <span class="n">doctest</span><span class="o">.</span><span class="n">NORMALIZE_WHITESPACE</span><span class="p">,</span> | 
|  | <span class="p">)</span> | 
|  | <span class="n">spark</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span> | 
|  | <span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span> | 
|  | <span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> | 
|  |  | 
|  |  | 
|  | <span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">"__main__"</span><span class="p">:</span> | 
|  | <span class="k">try</span><span class="p">:</span> | 
|  | <span class="kn">import</span> <span class="nn">mlflow</span>  <span class="c1"># noqa: F401</span> | 
|  | <span class="kn">import</span> <span class="nn">sklearn</span>  <span class="c1"># noqa: F401</span> | 
|  |  | 
|  | <span class="n">_test</span><span class="p">()</span> | 
|  | <span class="k">except</span> <span class="ne">ImportError</span><span class="p">:</span> | 
|  | <span class="k">pass</span> | 
|  | </pre></div> | 
|  |  | 
|  | </article> | 
|  |  | 
|  |  | 
|  |  | 
|  | <footer class="bd-footer-article"> | 
|  |  | 
|  | <div class="footer-article-items footer-article__inner"> | 
|  |  | 
|  | <div class="footer-article-item"><!-- Previous / next buttons --> | 
|  | <div class="prev-next-area"> | 
|  | </div></div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </footer> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | </div> | 
|  | <footer class="bd-footer-content"> | 
|  |  | 
|  | </footer> | 
|  |  | 
|  | </main> | 
|  | </div> | 
|  | </div> | 
|  |  | 
|  | <!-- Scripts loaded after <body> so the DOM is not blocked --> | 
|  | <script src="../../../_static/scripts/bootstrap.js?digest=e353d410970836974a52"></script> | 
|  | <script src="../../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52"></script> | 
|  |  | 
|  | <footer class="bd-footer"> | 
|  | <div class="bd-footer__inner bd-page-width"> | 
|  |  | 
|  | <div class="footer-items__start"> | 
|  |  | 
|  | <div class="footer-item"><p class="copyright"> | 
|  | Copyright @ 2024 The Apache Software Foundation, Licensed under the <a href="https://www.apache.org/licenses/LICENSE-2.0">Apache License, Version 2.0</a>. | 
|  | </p></div> | 
|  |  | 
|  | <div class="footer-item"> | 
|  | <p class="sphinx-version"> | 
|  | Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 4.5.0. | 
|  | <br/> | 
|  | </p> | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  |  | 
|  | <div class="footer-items__end"> | 
|  |  | 
|  | <div class="footer-item"><p class="theme-version"> | 
|  | Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.13.3. | 
|  | </p></div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </div> | 
|  |  | 
|  | </footer> | 
|  | </body> | 
|  | </html> |