| |
| |
| <!DOCTYPE html> |
| |
| |
| <html > |
| |
| <head> |
| <meta charset="utf-8" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1.0" /> |
| <title>pyspark.mllib.tree — PySpark 4.0.0-preview2 documentation</title> |
| |
| |
| |
| <script data-cfasync="false"> |
| document.documentElement.dataset.mode = localStorage.getItem("mode") || ""; |
| document.documentElement.dataset.theme = localStorage.getItem("theme") || "light"; |
| </script> |
| |
| <!-- Loaded before other Sphinx assets --> |
| <link href="../../../_static/styles/theme.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link href="../../../_static/styles/bootstrap.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link href="../../../_static/styles/pydata-sphinx-theme.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| |
| |
| <link href="../../../_static/vendor/fontawesome/6.1.2/css/all.min.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2" /> |
| |
| <link rel="stylesheet" type="text/css" href="../../../_static/pygments.css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" /> |
| |
| <!-- Pre-loaded scripts that we'll load fully later --> |
| <link rel="preload" as="script" href="../../../_static/scripts/bootstrap.js?digest=e353d410970836974a52" /> |
| <link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52" /> |
| |
| <script data-url_root="../../../" id="documentation_options" src="../../../_static/documentation_options.js"></script> |
| <script src="../../../_static/jquery.js"></script> |
| <script src="../../../_static/underscore.js"></script> |
| <script src="../../../_static/doctools.js"></script> |
| <script src="../../../_static/clipboard.min.js"></script> |
| <script src="../../../_static/copybutton.js"></script> |
| <script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script> |
| <script>DOCUMENTATION_OPTIONS.pagename = '_modules/pyspark/mllib/tree';</script> |
| <link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/mllib/tree.html" /> |
| <link rel="search" title="Search" href="../../../search.html" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1" /> |
| <meta name="docsearch:language" content="None"> |
| |
| |
| <!-- Matomo --> |
| <script type="text/javascript"> |
| var _paq = window._paq = window._paq || []; |
| /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ |
| _paq.push(["disableCookies"]); |
| _paq.push(['trackPageView']); |
| _paq.push(['enableLinkTracking']); |
| (function() { |
| var u="https://analytics.apache.org/"; |
| _paq.push(['setTrackerUrl', u+'matomo.php']); |
| _paq.push(['setSiteId', '40']); |
| var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; |
| g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); |
| })(); |
| </script> |
| <!-- End Matomo Code --> |
| |
| </head> |
| |
| |
| <body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode=""> |
| |
| |
| |
| <a class="skip-link" href="#main-content">Skip to main content</a> |
| |
| <input type="checkbox" |
| class="sidebar-toggle" |
| name="__primary" |
| id="__primary"/> |
| <label class="overlay overlay-primary" for="__primary"></label> |
| |
| <input type="checkbox" |
| class="sidebar-toggle" |
| name="__secondary" |
| id="__secondary"/> |
| <label class="overlay overlay-secondary" for="__secondary"></label> |
| |
| <div class="search-button__wrapper"> |
| <div class="search-button__overlay"></div> |
| <div class="search-button__search-container"> |
| <form class="bd-search d-flex align-items-center" |
| action="../../../search.html" |
| method="get"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| <input type="search" |
| class="form-control" |
| name="q" |
| id="search-input" |
| placeholder="Search the docs ..." |
| aria-label="Search the docs ..." |
| autocomplete="off" |
| autocorrect="off" |
| autocapitalize="off" |
| spellcheck="false"/> |
| <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span> |
| </form></div> |
| </div> |
| |
| <nav class="bd-header navbar navbar-expand-lg bd-navbar"> |
| <div class="bd-header__inner bd-page-width"> |
| <label class="sidebar-toggle primary-toggle" for="__primary"> |
| <span class="fa-solid fa-bars"></span> |
| </label> |
| |
| <div class="navbar-header-items__start"> |
| |
| <div class="navbar-item"> |
| |
| |
| <a class="navbar-brand logo" href="../../../index.html"> |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| <img src="https://spark.apache.org/images/spark-logo.png" class="logo__image only-light" alt="Logo image"/> |
| <script>document.write(`<img src="https://spark.apache.org/images/spark-logo-rev.svg" class="logo__image only-dark" alt="Logo image"/>`);</script> |
| |
| |
| </a></div> |
| |
| </div> |
| |
| |
| <div class="col-lg-9 navbar-header-items"> |
| |
| <div class="me-auto navbar-header-items__center"> |
| |
| <div class="navbar-item"><nav class="navbar-nav"> |
| <p class="sidebar-header-items__title" |
| role="heading" |
| aria-level="1" |
| aria-label="Site Navigation"> |
| Site Navigation |
| </p> |
| <ul class="bd-navbar-elements navbar-nav"> |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../index.html"> |
| Overview |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../getting_started/index.html"> |
| Getting Started |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../user_guide/index.html"> |
| User Guides |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../reference/index.html"> |
| API Reference |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../development/index.html"> |
| Development |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../migration_guide/index.html"> |
| Migration Guides |
| </a> |
| </li> |
| |
| </ul> |
| </nav></div> |
| |
| </div> |
| |
| |
| <div class="navbar-header-items__end"> |
| |
| <div class="navbar-item navbar-persistent--container"> |
| |
| <script> |
| document.write(` |
| <button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| </button> |
| `); |
| </script> |
| </div> |
| |
| |
| <div class="navbar-item"><!-- |
| Licensed to the Apache Software Foundation (ASF) under one or more |
| contributor license agreements. See the NOTICE file distributed with |
| this work for additional information regarding copyright ownership. |
| The ASF licenses this file to You under the Apache License, Version 2.0 |
| (the "License"); you may not use this file except in compliance with |
| the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| --> |
| |
| <div id="version-button" class="dropdown"> |
| <button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown"> |
| 4.0.0-preview2 |
| <span class="caret"></span> |
| </button> |
| <div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button"> |
| <!-- dropdown will be populated by javascript on page load --> |
| </div> |
| </div> |
| |
| <script type="text/javascript"> |
| // Function to construct the target URL from the JSON components |
| function buildURL(entry) { |
| var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja |
| template = template.replace("{version}", entry.version); |
| return template; |
| } |
| |
| // Function to check if corresponding page path exists in other version of docs |
| // and, if so, go there instead of the homepage of the other docs version |
| function checkPageExistsAndRedirect(event) { |
| const currentFilePath = "_modules/pyspark/mllib/tree.html", |
| otherDocsHomepage = event.target.getAttribute("href"); |
| let tryUrl = `${otherDocsHomepage}${currentFilePath}`; |
| $.ajax({ |
| type: 'HEAD', |
| url: tryUrl, |
| // if the page exists, go there |
| success: function() { |
| location.href = tryUrl; |
| } |
| }).fail(function() { |
| location.href = otherDocsHomepage; |
| }); |
| return false; |
| } |
| |
| // Function to populate the version switcher |
| (function () { |
| // get JSON config |
| $.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) { |
| // create the nodes first (before AJAX calls) to ensure the order is |
| // correct (for now, links will go to doc version homepage) |
| $.each(data, function(index, entry) { |
| // if no custom name specified (e.g., "latest"), use version string |
| if (!("name" in entry)) { |
| entry.name = entry.version; |
| } |
| // construct the appropriate URL, and add it to the dropdown |
| entry.url = buildURL(entry); |
| const node = document.createElement("a"); |
| node.setAttribute("class", "list-group-item list-group-item-action py-1"); |
| node.setAttribute("href", `${entry.url}`); |
| node.textContent = `${entry.name}`; |
| node.onclick = checkPageExistsAndRedirect; |
| $("#version_switcher").append(node); |
| }); |
| }); |
| })(); |
| </script></div> |
| |
| <div class="navbar-item"> |
| <script> |
| document.write(` |
| <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span> |
| <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span> |
| <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span> |
| </button> |
| `); |
| </script></div> |
| |
| <div class="navbar-item"><ul class="navbar-icon-links navbar-nav" |
| aria-label="Icon Links"> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span> |
| <label class="sr-only">GitHub</label></a> |
| </li> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span> |
| <label class="sr-only">PyPI</label></a> |
| </li> |
| </ul></div> |
| |
| </div> |
| |
| </div> |
| |
| |
| <div class="navbar-persistent--mobile"> |
| <script> |
| document.write(` |
| <button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| </button> |
| `); |
| </script> |
| </div> |
| |
| |
| |
| </div> |
| |
| </nav> |
| |
| <div class="bd-container"> |
| <div class="bd-container__inner bd-page-width"> |
| |
| <div class="bd-sidebar-primary bd-sidebar hide-on-wide"> |
| |
| |
| |
| <div class="sidebar-header-items sidebar-primary__section"> |
| |
| |
| <div class="sidebar-header-items__center"> |
| |
| <div class="navbar-item"><nav class="navbar-nav"> |
| <p class="sidebar-header-items__title" |
| role="heading" |
| aria-level="1" |
| aria-label="Site Navigation"> |
| Site Navigation |
| </p> |
| <ul class="bd-navbar-elements navbar-nav"> |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../index.html"> |
| Overview |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../getting_started/index.html"> |
| Getting Started |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../user_guide/index.html"> |
| User Guides |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../reference/index.html"> |
| API Reference |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../development/index.html"> |
| Development |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../migration_guide/index.html"> |
| Migration Guides |
| </a> |
| </li> |
| |
| </ul> |
| </nav></div> |
| |
| </div> |
| |
| |
| |
| <div class="sidebar-header-items__end"> |
| |
| <div class="navbar-item"><!-- |
| Licensed to the Apache Software Foundation (ASF) under one or more |
| contributor license agreements. See the NOTICE file distributed with |
| this work for additional information regarding copyright ownership. |
| The ASF licenses this file to You under the Apache License, Version 2.0 |
| (the "License"); you may not use this file except in compliance with |
| the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| --> |
| |
| <div id="version-button" class="dropdown"> |
| <button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown"> |
| 4.0.0-preview2 |
| <span class="caret"></span> |
| </button> |
| <div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button"> |
| <!-- dropdown will be populated by javascript on page load --> |
| </div> |
| </div> |
| |
| <script type="text/javascript"> |
| // Function to construct the target URL from the JSON components |
| function buildURL(entry) { |
| var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja |
| template = template.replace("{version}", entry.version); |
| return template; |
| } |
| |
| // Function to check if corresponding page path exists in other version of docs |
| // and, if so, go there instead of the homepage of the other docs version |
| function checkPageExistsAndRedirect(event) { |
| const currentFilePath = "_modules/pyspark/mllib/tree.html", |
| otherDocsHomepage = event.target.getAttribute("href"); |
| let tryUrl = `${otherDocsHomepage}${currentFilePath}`; |
| $.ajax({ |
| type: 'HEAD', |
| url: tryUrl, |
| // if the page exists, go there |
| success: function() { |
| location.href = tryUrl; |
| } |
| }).fail(function() { |
| location.href = otherDocsHomepage; |
| }); |
| return false; |
| } |
| |
| // Function to populate the version switcher |
| (function () { |
| // get JSON config |
| $.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) { |
| // create the nodes first (before AJAX calls) to ensure the order is |
| // correct (for now, links will go to doc version homepage) |
| $.each(data, function(index, entry) { |
| // if no custom name specified (e.g., "latest"), use version string |
| if (!("name" in entry)) { |
| entry.name = entry.version; |
| } |
| // construct the appropriate URL, and add it to the dropdown |
| entry.url = buildURL(entry); |
| const node = document.createElement("a"); |
| node.setAttribute("class", "list-group-item list-group-item-action py-1"); |
| node.setAttribute("href", `${entry.url}`); |
| node.textContent = `${entry.name}`; |
| node.onclick = checkPageExistsAndRedirect; |
| $("#version_switcher").append(node); |
| }); |
| }); |
| })(); |
| </script></div> |
| |
| <div class="navbar-item"> |
| <script> |
| document.write(` |
| <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span> |
| <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span> |
| <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span> |
| </button> |
| `); |
| </script></div> |
| |
| <div class="navbar-item"><ul class="navbar-icon-links navbar-nav" |
| aria-label="Icon Links"> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span> |
| <label class="sr-only">GitHub</label></a> |
| </li> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span> |
| <label class="sr-only">PyPI</label></a> |
| </li> |
| </ul></div> |
| |
| </div> |
| |
| </div> |
| |
| |
| <div class="sidebar-primary-items__end sidebar-primary__section"> |
| </div> |
| |
| <div id="rtd-footer-container"></div> |
| |
| |
| </div> |
| |
| <main id="main-content" class="bd-main"> |
| |
| |
| <div class="bd-content"> |
| <div class="bd-article-container"> |
| |
| <div class="bd-header-article"> |
| <div class="header-article-items header-article__inner"> |
| |
| <div class="header-article-items__start"> |
| |
| <div class="header-article-item"> |
| |
| |
| |
| <nav aria-label="Breadcrumbs"> |
| <ul class="bd-breadcrumbs" role="navigation" aria-label="Breadcrumb"> |
| |
| <li class="breadcrumb-item breadcrumb-home"> |
| <a href="../../../index.html" class="nav-link" aria-label="Home"> |
| <i class="fa-solid fa-home"></i> |
| </a> |
| </li> |
| |
| <li class="breadcrumb-item"><a href="../../index.html" class="nav-link">Module code</a></li> |
| |
| <li class="breadcrumb-item active" aria-current="page">pyspark.mllib.tree</li> |
| </ul> |
| </nav> |
| </div> |
| |
| </div> |
| |
| |
| </div> |
| </div> |
| |
| |
| |
| |
| <div id="searchbox"></div> |
| <article class="bd-article" role="main"> |
| |
| <h1>Source code for pyspark.mllib.tree</h1><div class="highlight"><pre> |
| <span></span><span class="c1">#</span> |
| <span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span> |
| <span class="c1"># contributor license agreements. See the NOTICE file distributed with</span> |
| <span class="c1"># this work for additional information regarding copyright ownership.</span> |
| <span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span> |
| <span class="c1"># (the "License"); you may not use this file except in compliance with</span> |
| <span class="c1"># the License. You may obtain a copy of the License at</span> |
| <span class="c1">#</span> |
| <span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span> |
| <span class="c1">#</span> |
| <span class="c1"># Unless required by applicable law or agreed to in writing, software</span> |
| <span class="c1"># distributed under the License is distributed on an "AS IS" BASIS,</span> |
| <span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span> |
| <span class="c1"># See the License for the specific language governing permissions and</span> |
| <span class="c1"># limitations under the License.</span> |
| <span class="c1">#</span> |
| |
| <span class="kn">import</span> <span class="nn">sys</span> |
| <span class="kn">import</span> <span class="nn">random</span> |
| |
| <span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">RDD</span><span class="p">,</span> <span class="n">since</span> |
| <span class="kn">from</span> <span class="nn">pyspark.mllib.common</span> <span class="kn">import</span> <span class="n">callMLlibFunc</span><span class="p">,</span> <span class="n">inherit_doc</span><span class="p">,</span> <span class="n">JavaModelWrapper</span> |
| <span class="kn">from</span> <span class="nn">pyspark.mllib.linalg</span> <span class="kn">import</span> <span class="n">_convert_to_vector</span> |
| <span class="kn">from</span> <span class="nn">pyspark.mllib.regression</span> <span class="kn">import</span> <span class="n">LabeledPoint</span> |
| <span class="kn">from</span> <span class="nn">pyspark.mllib.util</span> <span class="kn">import</span> <span class="n">JavaLoader</span><span class="p">,</span> <span class="n">JavaSaveable</span> |
| <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Dict</span><span class="p">,</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">Union</span><span class="p">,</span> <span class="n">overload</span><span class="p">,</span> <span class="n">TYPE_CHECKING</span> |
| <span class="kn">from</span> <span class="nn">pyspark.core.rdd</span> <span class="kn">import</span> <span class="n">RDD</span> |
| |
| <span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span> |
| <span class="kn">from</span> <span class="nn">pyspark.mllib._typing</span> <span class="kn">import</span> <span class="n">VectorLike</span> |
| |
| |
| <span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span> |
| <span class="s2">"DecisionTreeModel"</span><span class="p">,</span> |
| <span class="s2">"DecisionTree"</span><span class="p">,</span> |
| <span class="s2">"RandomForestModel"</span><span class="p">,</span> |
| <span class="s2">"RandomForest"</span><span class="p">,</span> |
| <span class="s2">"GradientBoostedTreesModel"</span><span class="p">,</span> |
| <span class="s2">"GradientBoostedTrees"</span><span class="p">,</span> |
| <span class="p">]</span> |
| |
| |
| <span class="k">class</span> <span class="nc">TreeEnsembleModel</span><span class="p">(</span><span class="n">JavaModelWrapper</span><span class="p">,</span> <span class="n">JavaSaveable</span><span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""TreeEnsembleModel</span> |
| |
| <span class="sd"> .. versionadded:: 1.3.0</span> |
| <span class="sd"> """</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="s2">"VectorLike"</span><span class="p">)</span> <span class="o">-></span> <span class="nb">float</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="s2">"VectorLike"</span><span class="p">])</span> <span class="o">-></span> <span class="n">RDD</span><span class="p">[</span><span class="nb">float</span><span class="p">]:</span> |
| <span class="o">...</span> |
| |
| <span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">"VectorLike"</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="s2">"VectorLike"</span><span class="p">]])</span> <span class="o">-></span> <span class="n">Union</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="nb">float</span><span class="p">]]:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Predict values for a single data point or an RDD of points using</span> |
| <span class="sd"> the model trained.</span> |
| |
| <span class="sd"> .. versionadded:: 1.3.0</span> |
| |
| <span class="sd"> Notes</span> |
| <span class="sd"> -----</span> |
| <span class="sd"> In Python, predict cannot currently be used within an RDD</span> |
| <span class="sd"> transformation or action.</span> |
| <span class="sd"> Call predict directly on the RDD instead.</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">RDD</span><span class="p">):</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">"predict"</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">_convert_to_vector</span><span class="p">))</span> |
| |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">"predict"</span><span class="p">,</span> <span class="n">_convert_to_vector</span><span class="p">(</span><span class="n">x</span><span class="p">))</span> |
| |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.3.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">numTrees</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Get number of trees in ensemble.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">"numTrees"</span><span class="p">)</span> |
| |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.3.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">totalNumNodes</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Get total number of nodes, summed over all trees in the ensemble.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">"totalNumNodes"</span><span class="p">)</span> |
| |
| <span class="k">def</span> <span class="fm">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Summary of model"""</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_java_model</span><span class="o">.</span><span class="n">toString</span><span class="p">()</span> |
| |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.3.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">toDebugString</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Full model"""</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_java_model</span><span class="o">.</span><span class="n">toDebugString</span><span class="p">()</span> |
| |
| |
| <div class="viewcode-block" id="DecisionTreeModel"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.tree.DecisionTreeModel.html#pyspark.mllib.tree.DecisionTreeModel">[docs]</a><span class="k">class</span> <span class="nc">DecisionTreeModel</span><span class="p">(</span><span class="n">JavaModelWrapper</span><span class="p">,</span> <span class="n">JavaSaveable</span><span class="p">,</span> <span class="n">JavaLoader</span><span class="p">[</span><span class="s2">"DecisionTreeModel"</span><span class="p">]):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> A decision tree model for classification or regression.</span> |
| |
| <span class="sd"> .. versionadded:: 1.1.0</span> |
| <span class="sd"> """</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="s2">"VectorLike"</span><span class="p">)</span> <span class="o">-></span> <span class="nb">float</span><span class="p">:</span> |
| <span class="o">...</span> |
| |
| <span class="nd">@overload</span> |
| <span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="s2">"VectorLike"</span><span class="p">])</span> <span class="o">-></span> <span class="n">RDD</span><span class="p">[</span><span class="nb">float</span><span class="p">]:</span> |
| <span class="o">...</span> |
| |
| <div class="viewcode-block" id="DecisionTreeModel.predict"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.tree.DecisionTreeModel.html#pyspark.mllib.tree.DecisionTreeModel.predict">[docs]</a> <span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="s2">"VectorLike"</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="s2">"VectorLike"</span><span class="p">]])</span> <span class="o">-></span> <span class="n">Union</span><span class="p">[</span><span class="nb">float</span><span class="p">,</span> <span class="n">RDD</span><span class="p">[</span><span class="nb">float</span><span class="p">]]:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Predict the label of one or more examples.</span> |
| |
| <span class="sd"> .. versionadded:: 1.1.0</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> x : :py:class:`pyspark.mllib.linalg.Vector` or :py:class:`pyspark.RDD`</span> |
| <span class="sd"> Data point (feature vector), or an RDD of data points (feature</span> |
| <span class="sd"> vectors).</span> |
| |
| <span class="sd"> Notes</span> |
| <span class="sd"> -----</span> |
| <span class="sd"> In Python, predict cannot currently be used within an RDD</span> |
| <span class="sd"> transformation or action.</span> |
| <span class="sd"> Call predict directly on the RDD instead.</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">RDD</span><span class="p">):</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">"predict"</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="n">_convert_to_vector</span><span class="p">))</span> |
| |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">call</span><span class="p">(</span><span class="s2">"predict"</span><span class="p">,</span> <span class="n">_convert_to_vector</span><span class="p">(</span><span class="n">x</span><span class="p">))</span></div> |
| |
| <div class="viewcode-block" id="DecisionTreeModel.numNodes"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.tree.DecisionTreeModel.html#pyspark.mllib.tree.DecisionTreeModel.numNodes">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.1.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">numNodes</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Get number of nodes in tree, including leaf nodes."""</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_java_model</span><span class="o">.</span><span class="n">numNodes</span><span class="p">()</span></div> |
| |
| <div class="viewcode-block" id="DecisionTreeModel.depth"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.tree.DecisionTreeModel.html#pyspark.mllib.tree.DecisionTreeModel.depth">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.1.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">depth</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Get depth of tree (e.g. depth 0 means 1 leaf node, depth 1</span> |
| <span class="sd"> means 1 internal node + 2 leaf nodes).</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_java_model</span><span class="o">.</span><span class="n">depth</span><span class="p">()</span></div> |
| |
| <span class="k">def</span> <span class="fm">__repr__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""summary of model."""</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_java_model</span><span class="o">.</span><span class="n">toString</span><span class="p">()</span> |
| |
| <div class="viewcode-block" id="DecisionTreeModel.toDebugString"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.tree.DecisionTreeModel.html#pyspark.mllib.tree.DecisionTreeModel.toDebugString">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.2.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">toDebugString</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""full model."""</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_java_model</span><span class="o">.</span><span class="n">toDebugString</span><span class="p">()</span></div> |
| |
| <span class="nd">@classmethod</span> |
| <span class="k">def</span> <span class="nf">_java_loader_class</span><span class="p">(</span><span class="bp">cls</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> |
| <span class="k">return</span> <span class="s2">"org.apache.spark.mllib.tree.model.DecisionTreeModel"</span></div> |
| |
| |
| <div class="viewcode-block" id="DecisionTree"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.tree.DecisionTree.html#pyspark.mllib.tree.DecisionTree">[docs]</a><span class="k">class</span> <span class="nc">DecisionTree</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Learning algorithm for a decision tree model for classification or</span> |
| <span class="sd"> regression.</span> |
| |
| <span class="sd"> .. versionadded:: 1.1.0</span> |
| <span class="sd"> """</span> |
| |
| <span class="nd">@classmethod</span> |
| <span class="k">def</span> <span class="nf">_train</span><span class="p">(</span> |
| <span class="bp">cls</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">LabeledPoint</span><span class="p">],</span> |
| <span class="nb">type</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> |
| <span class="n">numClasses</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">features</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">int</span><span class="p">],</span> |
| <span class="n">impurity</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"gini"</span><span class="p">,</span> |
| <span class="n">maxDepth</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">5</span><span class="p">,</span> |
| <span class="n">maxBins</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">32</span><span class="p">,</span> |
| <span class="n">minInstancesPerNode</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> |
| <span class="n">minInfoGain</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">DecisionTreeModel</span><span class="p">:</span> |
| <span class="n">first</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">first</span><span class="p">()</span> |
| <span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">first</span><span class="p">,</span> <span class="n">LabeledPoint</span><span class="p">),</span> <span class="s2">"the data should be RDD of LabeledPoint"</span> |
| <span class="n">model</span> <span class="o">=</span> <span class="n">callMLlibFunc</span><span class="p">(</span> |
| <span class="s2">"trainDecisionTreeModel"</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">,</span> |
| <span class="nb">type</span><span class="p">,</span> |
| <span class="n">numClasses</span><span class="p">,</span> |
| <span class="n">features</span><span class="p">,</span> |
| <span class="n">impurity</span><span class="p">,</span> |
| <span class="n">maxDepth</span><span class="p">,</span> |
| <span class="n">maxBins</span><span class="p">,</span> |
| <span class="n">minInstancesPerNode</span><span class="p">,</span> |
| <span class="n">minInfoGain</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="k">return</span> <span class="n">DecisionTreeModel</span><span class="p">(</span><span class="n">model</span><span class="p">)</span> |
| |
| <div class="viewcode-block" id="DecisionTree.trainClassifier"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.tree.DecisionTree.html#pyspark.mllib.tree.DecisionTree.trainClassifier">[docs]</a> <span class="nd">@classmethod</span> |
| <span class="k">def</span> <span class="nf">trainClassifier</span><span class="p">(</span> |
| <span class="bp">cls</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">LabeledPoint</span><span class="p">],</span> |
| <span class="n">numClasses</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">categoricalFeaturesInfo</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">int</span><span class="p">],</span> |
| <span class="n">impurity</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"gini"</span><span class="p">,</span> |
| <span class="n">maxDepth</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">5</span><span class="p">,</span> |
| <span class="n">maxBins</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">32</span><span class="p">,</span> |
| <span class="n">minInstancesPerNode</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> |
| <span class="n">minInfoGain</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">DecisionTreeModel</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Train a decision tree model for classification.</span> |
| |
| <span class="sd"> .. versionadded:: 1.1.0</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> data : :py:class:`pyspark.RDD`</span> |
| <span class="sd"> Training data: RDD of LabeledPoint. Labels should take values</span> |
| <span class="sd"> {0, 1, ..., numClasses-1}.</span> |
| <span class="sd"> numClasses : int</span> |
| <span class="sd"> Number of classes for classification.</span> |
| <span class="sd"> categoricalFeaturesInfo : dict</span> |
| <span class="sd"> Map storing arity of categorical features. An entry (n -> k)</span> |
| <span class="sd"> indicates that feature n is categorical with k categories</span> |
| <span class="sd"> indexed from 0: {0, 1, ..., k-1}.</span> |
| <span class="sd"> impurity : str, optional</span> |
| <span class="sd"> Criterion used for information gain calculation.</span> |
| <span class="sd"> Supported values: "gini" or "entropy".</span> |
| <span class="sd"> (default: "gini")</span> |
| <span class="sd"> maxDepth : int, optional</span> |
| <span class="sd"> Maximum depth of tree (e.g. depth 0 means 1 leaf node, depth 1</span> |
| <span class="sd"> means 1 internal node + 2 leaf nodes).</span> |
| <span class="sd"> (default: 5)</span> |
| <span class="sd"> maxBins : int, optional</span> |
| <span class="sd"> Number of bins used for finding splits at each node.</span> |
| <span class="sd"> (default: 32)</span> |
| <span class="sd"> minInstancesPerNode : int, optional</span> |
| <span class="sd"> Minimum number of instances required at child nodes to create</span> |
| <span class="sd"> the parent split.</span> |
| <span class="sd"> (default: 1)</span> |
| <span class="sd"> minInfoGain : float, optional</span> |
| <span class="sd"> Minimum info gain required to create a split.</span> |
| <span class="sd"> (default: 0.0)</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :py:class:`DecisionTreeModel`</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> from numpy import array</span> |
| <span class="sd"> >>> from pyspark.mllib.regression import LabeledPoint</span> |
| <span class="sd"> >>> from pyspark.mllib.tree import DecisionTree</span> |
| <span class="sd"> >>></span> |
| <span class="sd"> >>> data = [</span> |
| <span class="sd"> ... LabeledPoint(0.0, [0.0]),</span> |
| <span class="sd"> ... LabeledPoint(1.0, [1.0]),</span> |
| <span class="sd"> ... LabeledPoint(1.0, [2.0]),</span> |
| <span class="sd"> ... LabeledPoint(1.0, [3.0])</span> |
| <span class="sd"> ... ]</span> |
| <span class="sd"> >>> model = DecisionTree.trainClassifier(sc.parallelize(data), 2, {})</span> |
| <span class="sd"> >>> print(model)</span> |
| <span class="sd"> DecisionTreeModel classifier of depth 1 with 3 nodes</span> |
| |
| <span class="sd"> >>> print(model.toDebugString())</span> |
| <span class="sd"> DecisionTreeModel classifier of depth 1 with 3 nodes</span> |
| <span class="sd"> If (feature 0 <= 0.5)</span> |
| <span class="sd"> Predict: 0.0</span> |
| <span class="sd"> Else (feature 0 > 0.5)</span> |
| <span class="sd"> Predict: 1.0</span> |
| <span class="sd"> >>> model.predict(array([1.0]))</span> |
| <span class="sd"> 1.0</span> |
| <span class="sd"> >>> model.predict(array([0.0]))</span> |
| <span class="sd"> 0.0</span> |
| <span class="sd"> >>> rdd = sc.parallelize([[1.0], [0.0]])</span> |
| <span class="sd"> >>> model.predict(rdd).collect()</span> |
| <span class="sd"> [1.0, 0.0]</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">cls</span><span class="o">.</span><span class="n">_train</span><span class="p">(</span> |
| <span class="n">data</span><span class="p">,</span> |
| <span class="s2">"classification"</span><span class="p">,</span> |
| <span class="n">numClasses</span><span class="p">,</span> |
| <span class="n">categoricalFeaturesInfo</span><span class="p">,</span> |
| <span class="n">impurity</span><span class="p">,</span> |
| <span class="n">maxDepth</span><span class="p">,</span> |
| <span class="n">maxBins</span><span class="p">,</span> |
| <span class="n">minInstancesPerNode</span><span class="p">,</span> |
| <span class="n">minInfoGain</span><span class="p">,</span> |
| <span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="DecisionTree.trainRegressor"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.tree.DecisionTree.html#pyspark.mllib.tree.DecisionTree.trainRegressor">[docs]</a> <span class="nd">@classmethod</span> |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.1.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">trainRegressor</span><span class="p">(</span> |
| <span class="bp">cls</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">LabeledPoint</span><span class="p">],</span> |
| <span class="n">categoricalFeaturesInfo</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">int</span><span class="p">],</span> |
| <span class="n">impurity</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"variance"</span><span class="p">,</span> |
| <span class="n">maxDepth</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">5</span><span class="p">,</span> |
| <span class="n">maxBins</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">32</span><span class="p">,</span> |
| <span class="n">minInstancesPerNode</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1</span><span class="p">,</span> |
| <span class="n">minInfoGain</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">DecisionTreeModel</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Train a decision tree model for regression.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> data : :py:class:`pyspark.RDD`</span> |
| <span class="sd"> Training data: RDD of LabeledPoint. Labels are real numbers.</span> |
| <span class="sd"> categoricalFeaturesInfo : dict</span> |
| <span class="sd"> Map storing arity of categorical features. An entry (n -> k)</span> |
| <span class="sd"> indicates that feature n is categorical with k categories</span> |
| <span class="sd"> indexed from 0: {0, 1, ..., k-1}.</span> |
| <span class="sd"> impurity : str, optional</span> |
| <span class="sd"> Criterion used for information gain calculation.</span> |
| <span class="sd"> The only supported value for regression is "variance".</span> |
| <span class="sd"> (default: "variance")</span> |
| <span class="sd"> maxDepth : int, optional</span> |
| <span class="sd"> Maximum depth of tree (e.g. depth 0 means 1 leaf node, depth 1</span> |
| <span class="sd"> means 1 internal node + 2 leaf nodes).</span> |
| <span class="sd"> (default: 5)</span> |
| <span class="sd"> maxBins : int, optional</span> |
| <span class="sd"> Number of bins used for finding splits at each node.</span> |
| <span class="sd"> (default: 32)</span> |
| <span class="sd"> minInstancesPerNode : int, optional</span> |
| <span class="sd"> Minimum number of instances required at child nodes to create</span> |
| <span class="sd"> the parent split.</span> |
| <span class="sd"> (default: 1)</span> |
| <span class="sd"> minInfoGain : float, optional</span> |
| <span class="sd"> Minimum info gain required to create a split.</span> |
| <span class="sd"> (default: 0.0)</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :py:class:`DecisionTreeModel`</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> from pyspark.mllib.regression import LabeledPoint</span> |
| <span class="sd"> >>> from pyspark.mllib.tree import DecisionTree</span> |
| <span class="sd"> >>> from pyspark.mllib.linalg import SparseVector</span> |
| <span class="sd"> >>></span> |
| <span class="sd"> >>> sparse_data = [</span> |
| <span class="sd"> ... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),</span> |
| <span class="sd"> ... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),</span> |
| <span class="sd"> ... LabeledPoint(0.0, SparseVector(2, {0: 0.0})),</span> |
| <span class="sd"> ... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))</span> |
| <span class="sd"> ... ]</span> |
| <span class="sd"> >>></span> |
| <span class="sd"> >>> model = DecisionTree.trainRegressor(sc.parallelize(sparse_data), {})</span> |
| <span class="sd"> >>> model.predict(SparseVector(2, {1: 1.0}))</span> |
| <span class="sd"> 1.0</span> |
| <span class="sd"> >>> model.predict(SparseVector(2, {1: 0.0}))</span> |
| <span class="sd"> 0.0</span> |
| <span class="sd"> >>> rdd = sc.parallelize([[0.0, 1.0], [0.0, 0.0]])</span> |
| <span class="sd"> >>> model.predict(rdd).collect()</span> |
| <span class="sd"> [1.0, 0.0]</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">cls</span><span class="o">.</span><span class="n">_train</span><span class="p">(</span> |
| <span class="n">data</span><span class="p">,</span> |
| <span class="s2">"regression"</span><span class="p">,</span> |
| <span class="mi">0</span><span class="p">,</span> |
| <span class="n">categoricalFeaturesInfo</span><span class="p">,</span> |
| <span class="n">impurity</span><span class="p">,</span> |
| <span class="n">maxDepth</span><span class="p">,</span> |
| <span class="n">maxBins</span><span class="p">,</span> |
| <span class="n">minInstancesPerNode</span><span class="p">,</span> |
| <span class="n">minInfoGain</span><span class="p">,</span> |
| <span class="p">)</span></div></div> |
| |
| |
| <div class="viewcode-block" id="RandomForestModel"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.tree.RandomForestModel.html#pyspark.mllib.tree.RandomForestModel">[docs]</a><span class="nd">@inherit_doc</span> |
| <span class="k">class</span> <span class="nc">RandomForestModel</span><span class="p">(</span><span class="n">TreeEnsembleModel</span><span class="p">,</span> <span class="n">JavaLoader</span><span class="p">[</span><span class="s2">"RandomForestModel"</span><span class="p">]):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Represents a random forest model.</span> |
| |
| <span class="sd"> .. versionadded:: 1.2.0</span> |
| <span class="sd"> """</span> |
| |
| <span class="nd">@classmethod</span> |
| <span class="k">def</span> <span class="nf">_java_loader_class</span><span class="p">(</span><span class="bp">cls</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> |
| <span class="k">return</span> <span class="s2">"org.apache.spark.mllib.tree.model.RandomForestModel"</span></div> |
| |
| |
| <div class="viewcode-block" id="RandomForest"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.tree.RandomForest.html#pyspark.mllib.tree.RandomForest">[docs]</a><span class="k">class</span> <span class="nc">RandomForest</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Learning algorithm for a random forest model for classification or</span> |
| <span class="sd"> regression.</span> |
| |
| <span class="sd"> .. versionadded:: 1.2.0</span> |
| <span class="sd"> """</span> |
| |
| <span class="n">supportedFeatureSubsetStrategies</span><span class="p">:</span> <span class="n">Tuple</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="o">...</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="s2">"auto"</span><span class="p">,</span> <span class="s2">"all"</span><span class="p">,</span> <span class="s2">"sqrt"</span><span class="p">,</span> <span class="s2">"log2"</span><span class="p">,</span> <span class="s2">"onethird"</span><span class="p">)</span> |
| |
| <span class="nd">@classmethod</span> |
| <span class="k">def</span> <span class="nf">_train</span><span class="p">(</span> |
| <span class="bp">cls</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">LabeledPoint</span><span class="p">],</span> |
| <span class="n">algo</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> |
| <span class="n">numClasses</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">categoricalFeaturesInfo</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">int</span><span class="p">],</span> |
| <span class="n">numTrees</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">featureSubsetStrategy</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> |
| <span class="n">impurity</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> |
| <span class="n">maxDepth</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">maxBins</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">seed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">],</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">RandomForestModel</span><span class="p">:</span> |
| <span class="n">first</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">first</span><span class="p">()</span> |
| <span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">first</span><span class="p">,</span> <span class="n">LabeledPoint</span><span class="p">),</span> <span class="s2">"the data should be RDD of LabeledPoint"</span> |
| <span class="k">if</span> <span class="n">featureSubsetStrategy</span> <span class="ow">not</span> <span class="ow">in</span> <span class="bp">cls</span><span class="o">.</span><span class="n">supportedFeatureSubsetStrategies</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"unsupported featureSubsetStrategy: </span><span class="si">%s</span><span class="s2">"</span> <span class="o">%</span> <span class="n">featureSubsetStrategy</span><span class="p">)</span> |
| <span class="k">if</span> <span class="n">seed</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">seed</span> <span class="o">=</span> <span class="n">random</span><span class="o">.</span><span class="n">randint</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span> <span class="o"><<</span> <span class="mi">30</span><span class="p">)</span> |
| <span class="n">model</span> <span class="o">=</span> <span class="n">callMLlibFunc</span><span class="p">(</span> |
| <span class="s2">"trainRandomForestModel"</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">,</span> |
| <span class="n">algo</span><span class="p">,</span> |
| <span class="n">numClasses</span><span class="p">,</span> |
| <span class="n">categoricalFeaturesInfo</span><span class="p">,</span> |
| <span class="n">numTrees</span><span class="p">,</span> |
| <span class="n">featureSubsetStrategy</span><span class="p">,</span> |
| <span class="n">impurity</span><span class="p">,</span> |
| <span class="n">maxDepth</span><span class="p">,</span> |
| <span class="n">maxBins</span><span class="p">,</span> |
| <span class="n">seed</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="k">return</span> <span class="n">RandomForestModel</span><span class="p">(</span><span class="n">model</span><span class="p">)</span> |
| |
| <div class="viewcode-block" id="RandomForest.trainClassifier"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.tree.RandomForest.html#pyspark.mllib.tree.RandomForest.trainClassifier">[docs]</a> <span class="nd">@classmethod</span> |
| <span class="k">def</span> <span class="nf">trainClassifier</span><span class="p">(</span> |
| <span class="bp">cls</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">LabeledPoint</span><span class="p">],</span> |
| <span class="n">numClasses</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">categoricalFeaturesInfo</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">int</span><span class="p">],</span> |
| <span class="n">numTrees</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">featureSubsetStrategy</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"auto"</span><span class="p">,</span> |
| <span class="n">impurity</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"gini"</span><span class="p">,</span> |
| <span class="n">maxDepth</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">4</span><span class="p">,</span> |
| <span class="n">maxBins</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">32</span><span class="p">,</span> |
| <span class="n">seed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">RandomForestModel</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Train a random forest model for binary or multiclass</span> |
| <span class="sd"> classification.</span> |
| |
| <span class="sd"> .. versionadded:: 1.2.0</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> data : :py:class:`pyspark.RDD`</span> |
| <span class="sd"> Training dataset: RDD of LabeledPoint. Labels should take values</span> |
| <span class="sd"> {0, 1, ..., numClasses-1}.</span> |
| <span class="sd"> numClasses : int</span> |
| <span class="sd"> Number of classes for classification.</span> |
| <span class="sd"> categoricalFeaturesInfo : dict</span> |
| <span class="sd"> Map storing arity of categorical features. An entry (n -> k)</span> |
| <span class="sd"> indicates that feature n is categorical with k categories</span> |
| <span class="sd"> indexed from 0: {0, 1, ..., k-1}.</span> |
| <span class="sd"> numTrees : int</span> |
| <span class="sd"> Number of trees in the random forest.</span> |
| <span class="sd"> featureSubsetStrategy : str, optional</span> |
| <span class="sd"> Number of features to consider for splits at each node.</span> |
| <span class="sd"> Supported values: "auto", "all", "sqrt", "log2", "onethird".</span> |
| <span class="sd"> If "auto" is set, this parameter is set based on numTrees:</span> |
| <span class="sd"> if numTrees == 1, set to "all";</span> |
| <span class="sd"> if numTrees > 1 (forest) set to "sqrt".</span> |
| <span class="sd"> (default: "auto")</span> |
| <span class="sd"> impurity : str, optional</span> |
| <span class="sd"> Criterion used for information gain calculation.</span> |
| <span class="sd"> Supported values: "gini" or "entropy".</span> |
| <span class="sd"> (default: "gini")</span> |
| <span class="sd"> maxDepth : int, optional</span> |
| <span class="sd"> Maximum depth of tree (e.g. depth 0 means 1 leaf node, depth 1</span> |
| <span class="sd"> means 1 internal node + 2 leaf nodes).</span> |
| <span class="sd"> (default: 4)</span> |
| <span class="sd"> maxBins : int, optional</span> |
| <span class="sd"> Maximum number of bins used for splitting features.</span> |
| <span class="sd"> (default: 32)</span> |
| <span class="sd"> seed : int, Optional</span> |
| <span class="sd"> Random seed for bootstrapping and choosing feature subsets.</span> |
| <span class="sd"> Set as None to generate seed based on system time.</span> |
| <span class="sd"> (default: None)</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :py:class:`RandomForestModel`</span> |
| <span class="sd"> that can be used for prediction.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> from pyspark.mllib.regression import LabeledPoint</span> |
| <span class="sd"> >>> from pyspark.mllib.tree import RandomForest</span> |
| <span class="sd"> >>></span> |
| <span class="sd"> >>> data = [</span> |
| <span class="sd"> ... LabeledPoint(0.0, [0.0]),</span> |
| <span class="sd"> ... LabeledPoint(0.0, [1.0]),</span> |
| <span class="sd"> ... LabeledPoint(1.0, [2.0]),</span> |
| <span class="sd"> ... LabeledPoint(1.0, [3.0])</span> |
| <span class="sd"> ... ]</span> |
| <span class="sd"> >>> model = RandomForest.trainClassifier(sc.parallelize(data), 2, {}, 3, seed=42)</span> |
| <span class="sd"> >>> model.numTrees()</span> |
| <span class="sd"> 3</span> |
| <span class="sd"> >>> model.totalNumNodes()</span> |
| <span class="sd"> 7</span> |
| <span class="sd"> >>> print(model)</span> |
| <span class="sd"> TreeEnsembleModel classifier with 3 trees</span> |
| <span class="sd"> >>> print(model.toDebugString())</span> |
| <span class="sd"> TreeEnsembleModel classifier with 3 trees</span> |
| <span class="sd"> Tree 0:</span> |
| <span class="sd"> Predict: 1.0</span> |
| <span class="sd"> Tree 1:</span> |
| <span class="sd"> If (feature 0 <= 1.5)</span> |
| <span class="sd"> Predict: 0.0</span> |
| <span class="sd"> Else (feature 0 > 1.5)</span> |
| <span class="sd"> Predict: 1.0</span> |
| <span class="sd"> Tree 2:</span> |
| <span class="sd"> If (feature 0 <= 1.5)</span> |
| <span class="sd"> Predict: 0.0</span> |
| <span class="sd"> Else (feature 0 > 1.5)</span> |
| <span class="sd"> Predict: 1.0</span> |
| <span class="sd"> >>> model.predict([2.0])</span> |
| <span class="sd"> 1.0</span> |
| <span class="sd"> >>> model.predict([0.0])</span> |
| <span class="sd"> 0.0</span> |
| <span class="sd"> >>> rdd = sc.parallelize([[3.0], [1.0]])</span> |
| <span class="sd"> >>> model.predict(rdd).collect()</span> |
| <span class="sd"> [1.0, 0.0]</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">cls</span><span class="o">.</span><span class="n">_train</span><span class="p">(</span> |
| <span class="n">data</span><span class="p">,</span> |
| <span class="s2">"classification"</span><span class="p">,</span> |
| <span class="n">numClasses</span><span class="p">,</span> |
| <span class="n">categoricalFeaturesInfo</span><span class="p">,</span> |
| <span class="n">numTrees</span><span class="p">,</span> |
| <span class="n">featureSubsetStrategy</span><span class="p">,</span> |
| <span class="n">impurity</span><span class="p">,</span> |
| <span class="n">maxDepth</span><span class="p">,</span> |
| <span class="n">maxBins</span><span class="p">,</span> |
| <span class="n">seed</span><span class="p">,</span> |
| <span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="RandomForest.trainRegressor"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.tree.RandomForest.html#pyspark.mllib.tree.RandomForest.trainRegressor">[docs]</a> <span class="nd">@classmethod</span> |
| <span class="k">def</span> <span class="nf">trainRegressor</span><span class="p">(</span> |
| <span class="bp">cls</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">LabeledPoint</span><span class="p">],</span> |
| <span class="n">categoricalFeaturesInfo</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">int</span><span class="p">],</span> |
| <span class="n">numTrees</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">featureSubsetStrategy</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"auto"</span><span class="p">,</span> |
| <span class="n">impurity</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"variance"</span><span class="p">,</span> |
| <span class="n">maxDepth</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">4</span><span class="p">,</span> |
| <span class="n">maxBins</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">32</span><span class="p">,</span> |
| <span class="n">seed</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">RandomForestModel</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Train a random forest model for regression.</span> |
| |
| <span class="sd"> .. versionadded:: 1.2.0</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> data : :py:class:`pyspark.RDD`</span> |
| <span class="sd"> Training dataset: RDD of LabeledPoint. Labels are real numbers.</span> |
| <span class="sd"> categoricalFeaturesInfo : dict</span> |
| <span class="sd"> Map storing arity of categorical features. An entry (n -> k)</span> |
| <span class="sd"> indicates that feature n is categorical with k categories</span> |
| <span class="sd"> indexed from 0: {0, 1, ..., k-1}.</span> |
| <span class="sd"> numTrees : int</span> |
| <span class="sd"> Number of trees in the random forest.</span> |
| <span class="sd"> featureSubsetStrategy : str, optional</span> |
| <span class="sd"> Number of features to consider for splits at each node.</span> |
| <span class="sd"> Supported values: "auto", "all", "sqrt", "log2", "onethird".</span> |
| <span class="sd"> If "auto" is set, this parameter is set based on numTrees:</span> |
| |
| <span class="sd"> - if numTrees == 1, set to "all";</span> |
| <span class="sd"> - if numTrees > 1 (forest) set to "onethird" for regression.</span> |
| |
| <span class="sd"> (default: "auto")</span> |
| <span class="sd"> impurity : str, optional</span> |
| <span class="sd"> Criterion used for information gain calculation.</span> |
| <span class="sd"> The only supported value for regression is "variance".</span> |
| <span class="sd"> (default: "variance")</span> |
| <span class="sd"> maxDepth : int, optional</span> |
| <span class="sd"> Maximum depth of tree (e.g. depth 0 means 1 leaf node, depth 1</span> |
| <span class="sd"> means 1 internal node + 2 leaf nodes).</span> |
| <span class="sd"> (default: 4)</span> |
| <span class="sd"> maxBins : int, optional</span> |
| <span class="sd"> Maximum number of bins used for splitting features.</span> |
| <span class="sd"> (default: 32)</span> |
| <span class="sd"> seed : int, optional</span> |
| <span class="sd"> Random seed for bootstrapping and choosing feature subsets.</span> |
| <span class="sd"> Set as None to generate seed based on system time.</span> |
| <span class="sd"> (default: None)</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :py:class:`RandomForestModel`</span> |
| <span class="sd"> that can be used for prediction.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> from pyspark.mllib.regression import LabeledPoint</span> |
| <span class="sd"> >>> from pyspark.mllib.tree import RandomForest</span> |
| <span class="sd"> >>> from pyspark.mllib.linalg import SparseVector</span> |
| <span class="sd"> >>></span> |
| <span class="sd"> >>> sparse_data = [</span> |
| <span class="sd"> ... LabeledPoint(0.0, SparseVector(2, {0: 1.0})),</span> |
| <span class="sd"> ... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),</span> |
| <span class="sd"> ... LabeledPoint(0.0, SparseVector(2, {0: 1.0})),</span> |
| <span class="sd"> ... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))</span> |
| <span class="sd"> ... ]</span> |
| <span class="sd"> >>></span> |
| <span class="sd"> >>> model = RandomForest.trainRegressor(sc.parallelize(sparse_data), {}, 2, seed=42)</span> |
| <span class="sd"> >>> model.numTrees()</span> |
| <span class="sd"> 2</span> |
| <span class="sd"> >>> model.totalNumNodes()</span> |
| <span class="sd"> 4</span> |
| <span class="sd"> >>> model.predict(SparseVector(2, {1: 1.0}))</span> |
| <span class="sd"> 1.0</span> |
| <span class="sd"> >>> model.predict(SparseVector(2, {0: 1.0}))</span> |
| <span class="sd"> 0.5</span> |
| <span class="sd"> >>> rdd = sc.parallelize([[0.0, 1.0], [1.0, 0.0]])</span> |
| <span class="sd"> >>> model.predict(rdd).collect()</span> |
| <span class="sd"> [1.0, 0.5]</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">cls</span><span class="o">.</span><span class="n">_train</span><span class="p">(</span> |
| <span class="n">data</span><span class="p">,</span> |
| <span class="s2">"regression"</span><span class="p">,</span> |
| <span class="mi">0</span><span class="p">,</span> |
| <span class="n">categoricalFeaturesInfo</span><span class="p">,</span> |
| <span class="n">numTrees</span><span class="p">,</span> |
| <span class="n">featureSubsetStrategy</span><span class="p">,</span> |
| <span class="n">impurity</span><span class="p">,</span> |
| <span class="n">maxDepth</span><span class="p">,</span> |
| <span class="n">maxBins</span><span class="p">,</span> |
| <span class="n">seed</span><span class="p">,</span> |
| <span class="p">)</span></div></div> |
| |
| |
| <div class="viewcode-block" id="GradientBoostedTreesModel"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.tree.GradientBoostedTreesModel.html#pyspark.mllib.tree.GradientBoostedTreesModel">[docs]</a><span class="nd">@inherit_doc</span> |
| <span class="k">class</span> <span class="nc">GradientBoostedTreesModel</span><span class="p">(</span><span class="n">TreeEnsembleModel</span><span class="p">,</span> <span class="n">JavaLoader</span><span class="p">[</span><span class="s2">"GradientBoostedTreesModel"</span><span class="p">]):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Represents a gradient-boosted tree model.</span> |
| |
| <span class="sd"> .. versionadded:: 1.3.0</span> |
| <span class="sd"> """</span> |
| |
| <span class="nd">@classmethod</span> |
| <span class="k">def</span> <span class="nf">_java_loader_class</span><span class="p">(</span><span class="bp">cls</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> |
| <span class="k">return</span> <span class="s2">"org.apache.spark.mllib.tree.model.GradientBoostedTreesModel"</span></div> |
| |
| |
| <div class="viewcode-block" id="GradientBoostedTrees"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.tree.GradientBoostedTrees.html#pyspark.mllib.tree.GradientBoostedTrees">[docs]</a><span class="k">class</span> <span class="nc">GradientBoostedTrees</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Learning algorithm for a gradient boosted trees model for</span> |
| <span class="sd"> classification or regression.</span> |
| |
| <span class="sd"> .. versionadded:: 1.3.0</span> |
| <span class="sd"> """</span> |
| |
| <span class="nd">@classmethod</span> |
| <span class="k">def</span> <span class="nf">_train</span><span class="p">(</span> |
| <span class="bp">cls</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">LabeledPoint</span><span class="p">],</span> |
| <span class="n">algo</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> |
| <span class="n">categoricalFeaturesInfo</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">int</span><span class="p">],</span> |
| <span class="n">loss</span><span class="p">:</span> <span class="nb">str</span><span class="p">,</span> |
| <span class="n">numIterations</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">learningRate</span><span class="p">:</span> <span class="nb">float</span><span class="p">,</span> |
| <span class="n">maxDepth</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">maxBins</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">GradientBoostedTreesModel</span><span class="p">:</span> |
| <span class="n">first</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">first</span><span class="p">()</span> |
| <span class="k">assert</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">first</span><span class="p">,</span> <span class="n">LabeledPoint</span><span class="p">),</span> <span class="s2">"the data should be RDD of LabeledPoint"</span> |
| <span class="n">model</span> <span class="o">=</span> <span class="n">callMLlibFunc</span><span class="p">(</span> |
| <span class="s2">"trainGradientBoostedTreesModel"</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">,</span> |
| <span class="n">algo</span><span class="p">,</span> |
| <span class="n">categoricalFeaturesInfo</span><span class="p">,</span> |
| <span class="n">loss</span><span class="p">,</span> |
| <span class="n">numIterations</span><span class="p">,</span> |
| <span class="n">learningRate</span><span class="p">,</span> |
| <span class="n">maxDepth</span><span class="p">,</span> |
| <span class="n">maxBins</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="k">return</span> <span class="n">GradientBoostedTreesModel</span><span class="p">(</span><span class="n">model</span><span class="p">)</span> |
| |
| <div class="viewcode-block" id="GradientBoostedTrees.trainClassifier"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.tree.GradientBoostedTrees.html#pyspark.mllib.tree.GradientBoostedTrees.trainClassifier">[docs]</a> <span class="nd">@classmethod</span> |
| <span class="k">def</span> <span class="nf">trainClassifier</span><span class="p">(</span> |
| <span class="bp">cls</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">LabeledPoint</span><span class="p">],</span> |
| <span class="n">categoricalFeaturesInfo</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">int</span><span class="p">],</span> |
| <span class="n">loss</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"logLoss"</span><span class="p">,</span> |
| <span class="n">numIterations</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">100</span><span class="p">,</span> |
| <span class="n">learningRate</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.1</span><span class="p">,</span> |
| <span class="n">maxDepth</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">3</span><span class="p">,</span> |
| <span class="n">maxBins</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">32</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">GradientBoostedTreesModel</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Train a gradient-boosted trees model for classification.</span> |
| |
| <span class="sd"> .. versionadded:: 1.3.0</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> data : :py:class:`pyspark.RDD`</span> |
| <span class="sd"> Training dataset: RDD of LabeledPoint. Labels should take values</span> |
| <span class="sd"> {0, 1}.</span> |
| <span class="sd"> categoricalFeaturesInfo : dict</span> |
| <span class="sd"> Map storing arity of categorical features. An entry (n -> k)</span> |
| <span class="sd"> indicates that feature n is categorical with k categories</span> |
| <span class="sd"> indexed from 0: {0, 1, ..., k-1}.</span> |
| <span class="sd"> loss : str, optional</span> |
| <span class="sd"> Loss function used for minimization during gradient boosting.</span> |
| <span class="sd"> Supported values: "logLoss", "leastSquaresError",</span> |
| <span class="sd"> "leastAbsoluteError".</span> |
| <span class="sd"> (default: "logLoss")</span> |
| <span class="sd"> numIterations : int, optional</span> |
| <span class="sd"> Number of iterations of boosting.</span> |
| <span class="sd"> (default: 100)</span> |
| <span class="sd"> learningRate : float, optional</span> |
| <span class="sd"> Learning rate for shrinking the contribution of each estimator.</span> |
| <span class="sd"> The learning rate should be between in the interval (0, 1].</span> |
| <span class="sd"> (default: 0.1)</span> |
| <span class="sd"> maxDepth : int, optional</span> |
| <span class="sd"> Maximum depth of tree (e.g. depth 0 means 1 leaf node, depth 1</span> |
| <span class="sd"> means 1 internal node + 2 leaf nodes).</span> |
| <span class="sd"> (default: 3)</span> |
| <span class="sd"> maxBins : int, optional</span> |
| <span class="sd"> Maximum number of bins used for splitting features. DecisionTree</span> |
| <span class="sd"> requires maxBins >= max categories.</span> |
| <span class="sd"> (default: 32)</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :py:class:`GradientBoostedTreesModel`</span> |
| <span class="sd"> that can be used for prediction.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> from pyspark.mllib.regression import LabeledPoint</span> |
| <span class="sd"> >>> from pyspark.mllib.tree import GradientBoostedTrees</span> |
| <span class="sd"> >>></span> |
| <span class="sd"> >>> data = [</span> |
| <span class="sd"> ... LabeledPoint(0.0, [0.0]),</span> |
| <span class="sd"> ... LabeledPoint(0.0, [1.0]),</span> |
| <span class="sd"> ... LabeledPoint(1.0, [2.0]),</span> |
| <span class="sd"> ... LabeledPoint(1.0, [3.0])</span> |
| <span class="sd"> ... ]</span> |
| <span class="sd"> >>></span> |
| <span class="sd"> >>> model = GradientBoostedTrees.trainClassifier(sc.parallelize(data), {}, numIterations=10)</span> |
| <span class="sd"> >>> model.numTrees()</span> |
| <span class="sd"> 10</span> |
| <span class="sd"> >>> model.totalNumNodes()</span> |
| <span class="sd"> 30</span> |
| <span class="sd"> >>> print(model) # it already has newline</span> |
| <span class="sd"> TreeEnsembleModel classifier with 10 trees</span> |
| <span class="sd"> >>> model.predict([2.0])</span> |
| <span class="sd"> 1.0</span> |
| <span class="sd"> >>> model.predict([0.0])</span> |
| <span class="sd"> 0.0</span> |
| <span class="sd"> >>> rdd = sc.parallelize([[2.0], [0.0]])</span> |
| <span class="sd"> >>> model.predict(rdd).collect()</span> |
| <span class="sd"> [1.0, 0.0]</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">cls</span><span class="o">.</span><span class="n">_train</span><span class="p">(</span> |
| <span class="n">data</span><span class="p">,</span> |
| <span class="s2">"classification"</span><span class="p">,</span> |
| <span class="n">categoricalFeaturesInfo</span><span class="p">,</span> |
| <span class="n">loss</span><span class="p">,</span> |
| <span class="n">numIterations</span><span class="p">,</span> |
| <span class="n">learningRate</span><span class="p">,</span> |
| <span class="n">maxDepth</span><span class="p">,</span> |
| <span class="n">maxBins</span><span class="p">,</span> |
| <span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="GradientBoostedTrees.trainRegressor"><a class="viewcode-back" href="../../../reference/api/pyspark.mllib.tree.GradientBoostedTrees.html#pyspark.mllib.tree.GradientBoostedTrees.trainRegressor">[docs]</a> <span class="nd">@classmethod</span> |
| <span class="k">def</span> <span class="nf">trainRegressor</span><span class="p">(</span> |
| <span class="bp">cls</span><span class="p">,</span> |
| <span class="n">data</span><span class="p">:</span> <span class="n">RDD</span><span class="p">[</span><span class="n">LabeledPoint</span><span class="p">],</span> |
| <span class="n">categoricalFeaturesInfo</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="nb">int</span><span class="p">],</span> |
| <span class="n">loss</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"leastSquaresError"</span><span class="p">,</span> |
| <span class="n">numIterations</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">100</span><span class="p">,</span> |
| <span class="n">learningRate</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.1</span><span class="p">,</span> |
| <span class="n">maxDepth</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">3</span><span class="p">,</span> |
| <span class="n">maxBins</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">32</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">GradientBoostedTreesModel</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Train a gradient-boosted trees model for regression.</span> |
| |
| <span class="sd"> .. versionadded:: 1.3.0</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> data :</span> |
| <span class="sd"> Training dataset: RDD of LabeledPoint. Labels are real numbers.</span> |
| <span class="sd"> categoricalFeaturesInfo : dict</span> |
| <span class="sd"> Map storing arity of categorical features. An entry (n -> k)</span> |
| <span class="sd"> indicates that feature n is categorical with k categories</span> |
| <span class="sd"> indexed from 0: {0, 1, ..., k-1}.</span> |
| <span class="sd"> loss : str, optional</span> |
| <span class="sd"> Loss function used for minimization during gradient boosting.</span> |
| <span class="sd"> Supported values: "logLoss", "leastSquaresError",</span> |
| <span class="sd"> "leastAbsoluteError".</span> |
| <span class="sd"> (default: "leastSquaresError")</span> |
| <span class="sd"> numIterations : int, optional</span> |
| <span class="sd"> Number of iterations of boosting.</span> |
| <span class="sd"> (default: 100)</span> |
| <span class="sd"> learningRate : float, optional</span> |
| <span class="sd"> Learning rate for shrinking the contribution of each estimator.</span> |
| <span class="sd"> The learning rate should be between in the interval (0, 1].</span> |
| <span class="sd"> (default: 0.1)</span> |
| <span class="sd"> maxDepth : int, optional</span> |
| <span class="sd"> Maximum depth of tree (e.g. depth 0 means 1 leaf node, depth 1</span> |
| <span class="sd"> means 1 internal node + 2 leaf nodes).</span> |
| <span class="sd"> (default: 3)</span> |
| <span class="sd"> maxBins : int, optional</span> |
| <span class="sd"> Maximum number of bins used for splitting features. DecisionTree</span> |
| <span class="sd"> requires maxBins >= max categories.</span> |
| <span class="sd"> (default: 32)</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :py:class:`GradientBoostedTreesModel`</span> |
| <span class="sd"> that can be used for prediction.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> from pyspark.mllib.regression import LabeledPoint</span> |
| <span class="sd"> >>> from pyspark.mllib.tree import GradientBoostedTrees</span> |
| <span class="sd"> >>> from pyspark.mllib.linalg import SparseVector</span> |
| <span class="sd"> >>></span> |
| <span class="sd"> >>> sparse_data = [</span> |
| <span class="sd"> ... LabeledPoint(0.0, SparseVector(2, {0: 1.0})),</span> |
| <span class="sd"> ... LabeledPoint(1.0, SparseVector(2, {1: 1.0})),</span> |
| <span class="sd"> ... LabeledPoint(0.0, SparseVector(2, {0: 1.0})),</span> |
| <span class="sd"> ... LabeledPoint(1.0, SparseVector(2, {1: 2.0}))</span> |
| <span class="sd"> ... ]</span> |
| <span class="sd"> >>></span> |
| <span class="sd"> >>> data = sc.parallelize(sparse_data)</span> |
| <span class="sd"> >>> model = GradientBoostedTrees.trainRegressor(data, {}, numIterations=10)</span> |
| <span class="sd"> >>> model.numTrees()</span> |
| <span class="sd"> 10</span> |
| <span class="sd"> >>> model.totalNumNodes()</span> |
| <span class="sd"> 12</span> |
| <span class="sd"> >>> model.predict(SparseVector(2, {1: 1.0}))</span> |
| <span class="sd"> 1.0</span> |
| <span class="sd"> >>> model.predict(SparseVector(2, {0: 1.0}))</span> |
| <span class="sd"> 0.0</span> |
| <span class="sd"> >>> rdd = sc.parallelize([[0.0, 1.0], [1.0, 0.0]])</span> |
| <span class="sd"> >>> model.predict(rdd).collect()</span> |
| <span class="sd"> [1.0, 0.0]</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">cls</span><span class="o">.</span><span class="n">_train</span><span class="p">(</span> |
| <span class="n">data</span><span class="p">,</span> |
| <span class="s2">"regression"</span><span class="p">,</span> |
| <span class="n">categoricalFeaturesInfo</span><span class="p">,</span> |
| <span class="n">loss</span><span class="p">,</span> |
| <span class="n">numIterations</span><span class="p">,</span> |
| <span class="n">learningRate</span><span class="p">,</span> |
| <span class="n">maxDepth</span><span class="p">,</span> |
| <span class="n">maxBins</span><span class="p">,</span> |
| <span class="p">)</span></div></div> |
| |
| |
| <span class="k">def</span> <span class="nf">_test</span><span class="p">()</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="kn">import</span> <span class="nn">doctest</span> |
| |
| <span class="n">globs</span> <span class="o">=</span> <span class="nb">globals</span><span class="p">()</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SparkSession</span> |
| |
| <span class="n">spark</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">master</span><span class="p">(</span><span class="s2">"local[4]"</span><span class="p">)</span><span class="o">.</span><span class="n">appName</span><span class="p">(</span><span class="s2">"mllib.tree tests"</span><span class="p">)</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span> |
| <span class="n">globs</span><span class="p">[</span><span class="s2">"sc"</span><span class="p">]</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">sparkContext</span> |
| <span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span> |
| <span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span> <span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span> <span class="o">|</span> <span class="n">doctest</span><span class="o">.</span><span class="n">NORMALIZE_WHITESPACE</span> |
| <span class="p">)</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span> |
| <span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span> |
| <span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> |
| |
| |
| <span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">"__main__"</span><span class="p">:</span> |
| <span class="n">_test</span><span class="p">()</span> |
| </pre></div> |
| |
| </article> |
| |
| |
| |
| <footer class="bd-footer-article"> |
| |
| <div class="footer-article-items footer-article__inner"> |
| |
| <div class="footer-article-item"><!-- Previous / next buttons --> |
| <div class="prev-next-area"> |
| </div></div> |
| |
| </div> |
| |
| </footer> |
| |
| </div> |
| |
| |
| |
| |
| </div> |
| <footer class="bd-footer-content"> |
| |
| </footer> |
| |
| </main> |
| </div> |
| </div> |
| |
| <!-- Scripts loaded after <body> so the DOM is not blocked --> |
| <script src="../../../_static/scripts/bootstrap.js?digest=e353d410970836974a52"></script> |
| <script src="../../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52"></script> |
| |
| <footer class="bd-footer"> |
| <div class="bd-footer__inner bd-page-width"> |
| |
| <div class="footer-items__start"> |
| |
| <div class="footer-item"><p class="copyright"> |
| Copyright @ 2024 The Apache Software Foundation, Licensed under the <a href="https://www.apache.org/licenses/LICENSE-2.0">Apache License, Version 2.0</a>. |
| </p></div> |
| |
| <div class="footer-item"> |
| <p class="sphinx-version"> |
| Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 4.5.0. |
| <br/> |
| </p> |
| </div> |
| |
| </div> |
| |
| |
| <div class="footer-items__end"> |
| |
| <div class="footer-item"><p class="theme-version"> |
| Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.13.3. |
| </p></div> |
| |
| </div> |
| |
| </div> |
| |
| </footer> |
| </body> |
| </html> |