blob: 4f6240106dea131ea780d49911e81e6f2b414efe [file] [log] [blame]
<!DOCTYPE html>
<html >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>pyspark.ml.tree &#8212; PySpark 4.0.0-preview2 documentation</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "light";
</script>
<!-- Loaded before other Sphinx assets -->
<link href="../../../_static/styles/theme.css?digest=e353d410970836974a52" rel="stylesheet" />
<link href="../../../_static/styles/bootstrap.css?digest=e353d410970836974a52" rel="stylesheet" />
<link href="../../../_static/styles/pydata-sphinx-theme.css?digest=e353d410970836974a52" rel="stylesheet" />
<link href="../../../_static/vendor/fontawesome/6.1.2/css/all.min.css?digest=e353d410970836974a52" rel="stylesheet" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2" />
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2" />
<link rel="stylesheet" type="text/css" href="../../../_static/pygments.css" />
<link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" />
<link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" />
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="../../../_static/scripts/bootstrap.js?digest=e353d410970836974a52" />
<link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52" />
<script data-url_root="../../../" id="documentation_options" src="../../../_static/documentation_options.js"></script>
<script src="../../../_static/jquery.js"></script>
<script src="../../../_static/underscore.js"></script>
<script src="../../../_static/doctools.js"></script>
<script src="../../../_static/clipboard.min.js"></script>
<script src="../../../_static/copybutton.js"></script>
<script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script>
<script>DOCUMENTATION_OPTIONS.pagename = '_modules/pyspark/ml/tree';</script>
<link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/ml/tree.html" />
<link rel="search" title="Search" href="../../../search.html" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="docsearch:language" content="None">
<!-- Matomo -->
<script type="text/javascript">
var _paq = window._paq = window._paq || [];
/* tracker methods like "setCustomDimension" should be called before "trackPageView" */
_paq.push(["disableCookies"]);
_paq.push(['trackPageView']);
_paq.push(['enableLinkTracking']);
(function() {
var u="https://analytics.apache.org/";
_paq.push(['setTrackerUrl', u+'matomo.php']);
_paq.push(['setSiteId', '40']);
var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0];
g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s);
})();
</script>
<!-- End Matomo Code -->
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<a class="skip-link" href="#main-content">Skip to main content</a>
<input type="checkbox"
class="sidebar-toggle"
name="__primary"
id="__primary"/>
<label class="overlay overlay-primary" for="__primary"></label>
<input type="checkbox"
class="sidebar-toggle"
name="__secondary"
id="__secondary"/>
<label class="overlay overlay-secondary" for="__secondary"></label>
<div class="search-button__wrapper">
<div class="search-button__overlay"></div>
<div class="search-button__search-container">
<form class="bd-search d-flex align-items-center"
action="../../../search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
id="search-input"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form></div>
</div>
<nav class="bd-header navbar navbar-expand-lg bd-navbar">
<div class="bd-header__inner bd-page-width">
<label class="sidebar-toggle primary-toggle" for="__primary">
<span class="fa-solid fa-bars"></span>
</label>
<div class="navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="../../../index.html">
<img src="https://spark.apache.org/images/spark-logo.png" class="logo__image only-light" alt="Logo image"/>
<script>document.write(`<img src="https://spark.apache.org/images/spark-logo-rev.svg" class="logo__image only-dark" alt="Logo image"/>`);</script>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item"><nav class="navbar-nav">
<p class="sidebar-header-items__title"
role="heading"
aria-level="1"
aria-label="Site Navigation">
Site Navigation
</p>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../index.html">
Overview
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../getting_started/index.html">
Getting Started
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../user_guide/index.html">
User Guides
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../reference/index.html">
API Reference
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../development/index.html">
Development
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../migration_guide/index.html">
Migration Guides
</a>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<script>
document.write(`
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
</button>
`);
</script>
</div>
<div class="navbar-item"><!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<div id="version-button" class="dropdown">
<button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown">
4.0.0-preview2
<span class="caret"></span>
</button>
<div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
<script type="text/javascript">
// Function to construct the target URL from the JSON components
function buildURL(entry) {
var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja
template = template.replace("{version}", entry.version);
return template;
}
// Function to check if corresponding page path exists in other version of docs
// and, if so, go there instead of the homepage of the other docs version
function checkPageExistsAndRedirect(event) {
const currentFilePath = "_modules/pyspark/ml/tree.html",
otherDocsHomepage = event.target.getAttribute("href");
let tryUrl = `${otherDocsHomepage}${currentFilePath}`;
$.ajax({
type: 'HEAD',
url: tryUrl,
// if the page exists, go there
success: function() {
location.href = tryUrl;
}
}).fail(function() {
location.href = otherDocsHomepage;
});
return false;
}
// Function to populate the version switcher
(function () {
// get JSON config
$.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) {
// create the nodes first (before AJAX calls) to ensure the order is
// correct (for now, links will go to doc version homepage)
$.each(data, function(index, entry) {
// if no custom name specified (e.g., "latest"), use version string
if (!("name" in entry)) {
entry.name = entry.version;
}
// construct the appropriate URL, and add it to the dropdown
entry.url = buildURL(entry);
const node = document.createElement("a");
node.setAttribute("class", "list-group-item list-group-item-action py-1");
node.setAttribute("href", `${entry.url}`);
node.textContent = `${entry.name}`;
node.onclick = checkPageExistsAndRedirect;
$("#version_switcher").append(node);
});
});
})();
</script></div>
<div class="navbar-item">
<script>
document.write(`
<button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
<span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span>
<span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span>
<span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span>
</button>
`);
</script></div>
<div class="navbar-item"><ul class="navbar-icon-links navbar-nav"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span>
<label class="sr-only">GitHub</label></a>
</li>
<li class="nav-item">
<a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span>
<label class="sr-only">PyPI</label></a>
</li>
</ul></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<script>
document.write(`
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
</button>
`);
</script>
</div>
</div>
</nav>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<div class="bd-sidebar-primary bd-sidebar hide-on-wide">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item"><nav class="navbar-nav">
<p class="sidebar-header-items__title"
role="heading"
aria-level="1"
aria-label="Site Navigation">
Site Navigation
</p>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../index.html">
Overview
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../getting_started/index.html">
Getting Started
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../user_guide/index.html">
User Guides
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../reference/index.html">
API Reference
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../development/index.html">
Development
</a>
</li>
<li class="nav-item">
<a class="nav-link nav-internal" href="../../../migration_guide/index.html">
Migration Guides
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item"><!--
Licensed to the Apache Software Foundation (ASF) under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
The ASF licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<div id="version-button" class="dropdown">
<button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown">
4.0.0-preview2
<span class="caret"></span>
</button>
<div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button">
<!-- dropdown will be populated by javascript on page load -->
</div>
</div>
<script type="text/javascript">
// Function to construct the target URL from the JSON components
function buildURL(entry) {
var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja
template = template.replace("{version}", entry.version);
return template;
}
// Function to check if corresponding page path exists in other version of docs
// and, if so, go there instead of the homepage of the other docs version
function checkPageExistsAndRedirect(event) {
const currentFilePath = "_modules/pyspark/ml/tree.html",
otherDocsHomepage = event.target.getAttribute("href");
let tryUrl = `${otherDocsHomepage}${currentFilePath}`;
$.ajax({
type: 'HEAD',
url: tryUrl,
// if the page exists, go there
success: function() {
location.href = tryUrl;
}
}).fail(function() {
location.href = otherDocsHomepage;
});
return false;
}
// Function to populate the version switcher
(function () {
// get JSON config
$.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) {
// create the nodes first (before AJAX calls) to ensure the order is
// correct (for now, links will go to doc version homepage)
$.each(data, function(index, entry) {
// if no custom name specified (e.g., "latest"), use version string
if (!("name" in entry)) {
entry.name = entry.version;
}
// construct the appropriate URL, and add it to the dropdown
entry.url = buildURL(entry);
const node = document.createElement("a");
node.setAttribute("class", "list-group-item list-group-item-action py-1");
node.setAttribute("href", `${entry.url}`);
node.textContent = `${entry.name}`;
node.onclick = checkPageExistsAndRedirect;
$("#version_switcher").append(node);
});
});
})();
</script></div>
<div class="navbar-item">
<script>
document.write(`
<button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip">
<span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span>
<span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span>
<span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span>
</button>
`);
</script></div>
<div class="navbar-item"><ul class="navbar-icon-links navbar-nav"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span>
<label class="sr-only">GitHub</label></a>
</li>
<li class="nav-item">
<a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span>
<label class="sr-only">PyPI</label></a>
</li>
</ul></div>
</div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
</div>
<div id="rtd-footer-container"></div>
</div>
<main id="main-content" class="bd-main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumbs">
<ul class="bd-breadcrumbs" role="navigation" aria-label="Breadcrumb">
<li class="breadcrumb-item breadcrumb-home">
<a href="../../../index.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="../../index.html" class="nav-link">Module code</a></li>
<li class="breadcrumb-item active" aria-current="page">pyspark.ml.tree</li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article" role="main">
<h1>Source code for pyspark.ml.tree</h1><div class="highlight"><pre>
<span></span><span class="c1">#</span>
<span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span>
<span class="c1"># contributor license agreements. See the NOTICE file distributed with</span>
<span class="c1"># this work for additional information regarding copyright ownership.</span>
<span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span>
<span class="c1"># (the &quot;License&quot;); you may not use this file except in compliance with</span>
<span class="c1"># the License. You may obtain a copy of the License at</span>
<span class="c1">#</span>
<span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span>
<span class="c1">#</span>
<span class="c1"># Unless required by applicable law or agreed to in writing, software</span>
<span class="c1"># distributed under the License is distributed on an &quot;AS IS&quot; BASIS,</span>
<span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span>
<span class="c1"># See the License for the specific language governing permissions and</span>
<span class="c1"># limitations under the License.</span>
<span class="c1">#</span>
<span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">List</span><span class="p">,</span> <span class="n">Sequence</span><span class="p">,</span> <span class="n">TypeVar</span><span class="p">,</span> <span class="n">TYPE_CHECKING</span>
<span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">since</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.linalg</span> <span class="kn">import</span> <span class="n">Vector</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.param</span> <span class="kn">import</span> <span class="n">Params</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.param.shared</span> <span class="kn">import</span> <span class="p">(</span>
<span class="n">HasCheckpointInterval</span><span class="p">,</span>
<span class="n">HasSeed</span><span class="p">,</span>
<span class="n">HasWeightCol</span><span class="p">,</span>
<span class="n">Param</span><span class="p">,</span>
<span class="n">TypeConverters</span><span class="p">,</span>
<span class="n">HasMaxIter</span><span class="p">,</span>
<span class="n">HasStepSize</span><span class="p">,</span>
<span class="n">HasValidationIndicatorCol</span><span class="p">,</span>
<span class="p">)</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.wrapper</span> <span class="kn">import</span> <span class="n">JavaPredictionModel</span>
<span class="kn">from</span> <span class="nn">pyspark.ml.common</span> <span class="kn">import</span> <span class="n">inherit_doc</span>
<span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span>
<span class="kn">from</span> <span class="nn">pyspark.ml._typing</span> <span class="kn">import</span> <span class="n">P</span>
<span class="n">T</span> <span class="o">=</span> <span class="n">TypeVar</span><span class="p">(</span><span class="s2">&quot;T&quot;</span><span class="p">)</span>
<span class="nd">@inherit_doc</span>
<span class="k">class</span> <span class="nc">_DecisionTreeModel</span><span class="p">(</span><span class="n">JavaPredictionModel</span><span class="p">[</span><span class="n">T</span><span class="p">]):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Abstraction for Decision Tree models.</span>
<span class="sd"> .. versionadded:: 1.5.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="nd">@property</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.5.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">numNodes</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Return number of nodes of the decision tree.&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">&quot;numNodes&quot;</span><span class="p">)</span>
<span class="nd">@property</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.5.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">depth</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Return depth of the decision tree.&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">&quot;depth&quot;</span><span class="p">)</span>
<span class="nd">@property</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;2.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">toDebugString</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Full description of model.&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">&quot;toDebugString&quot;</span><span class="p">)</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">predictLeaf</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="n">Vector</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Predict the indices of the leaves corresponding to the feature vector.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">&quot;predictLeaf&quot;</span><span class="p">,</span> <span class="n">value</span><span class="p">)</span>
<span class="k">class</span> <span class="nc">_DecisionTreeParams</span><span class="p">(</span><span class="n">HasCheckpointInterval</span><span class="p">,</span> <span class="n">HasSeed</span><span class="p">,</span> <span class="n">HasWeightCol</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Mixin for Decision Tree parameters.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">leafCol</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;leafCol&quot;</span><span class="p">,</span>
<span class="s2">&quot;Leaf indices column name. Predicted leaf &quot;</span>
<span class="o">+</span> <span class="s2">&quot;index of each instance in each tree by preorder.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">maxDepth</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;maxDepth&quot;</span><span class="p">,</span>
<span class="s2">&quot;Maximum depth of the tree. (&gt;= 0) E.g., &quot;</span>
<span class="o">+</span> <span class="s2">&quot;depth 0 means 1 leaf node; depth 1 means 1 internal node + 2 leaf nodes. &quot;</span>
<span class="o">+</span> <span class="s2">&quot;Must be in range [0, 30].&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toInt</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">maxBins</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;maxBins&quot;</span><span class="p">,</span>
<span class="s2">&quot;Max number of bins for discretizing continuous &quot;</span>
<span class="o">+</span> <span class="s2">&quot;features. Must be &gt;=2 and &gt;= number of categories for any categorical &quot;</span>
<span class="o">+</span> <span class="s2">&quot;feature.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toInt</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">minInstancesPerNode</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;minInstancesPerNode&quot;</span><span class="p">,</span>
<span class="s2">&quot;Minimum number of &quot;</span>
<span class="o">+</span> <span class="s2">&quot;instances each child must have after split. If a split causes &quot;</span>
<span class="o">+</span> <span class="s2">&quot;the left or right child to have fewer than &quot;</span>
<span class="o">+</span> <span class="s2">&quot;minInstancesPerNode, the split will be discarded as invalid. &quot;</span>
<span class="o">+</span> <span class="s2">&quot;Should be &gt;= 1.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toInt</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">minWeightFractionPerNode</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;minWeightFractionPerNode&quot;</span><span class="p">,</span>
<span class="s2">&quot;Minimum &quot;</span>
<span class="s2">&quot;fraction of the weighted sample count that each child &quot;</span>
<span class="s2">&quot;must have after split. If a split causes the fraction &quot;</span>
<span class="s2">&quot;of the total weight in the left or right child to be &quot;</span>
<span class="s2">&quot;less than minWeightFractionPerNode, the split will be &quot;</span>
<span class="s2">&quot;discarded as invalid. Should be in interval [0.0, 0.5).&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toFloat</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">minInfoGain</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;minInfoGain&quot;</span><span class="p">,</span>
<span class="s2">&quot;Minimum information gain for a split &quot;</span> <span class="o">+</span> <span class="s2">&quot;to be considered at a tree node.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toFloat</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">maxMemoryInMB</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;maxMemoryInMB&quot;</span><span class="p">,</span>
<span class="s2">&quot;Maximum memory in MB allocated to &quot;</span>
<span class="o">+</span> <span class="s2">&quot;histogram aggregation. If too small, then 1 node will be split per &quot;</span>
<span class="o">+</span> <span class="s2">&quot;iteration, and its aggregates may exceed this size.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toInt</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">cacheNodeIds</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">bool</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;cacheNodeIds&quot;</span><span class="p">,</span>
<span class="s2">&quot;If false, the algorithm will pass &quot;</span>
<span class="o">+</span> <span class="s2">&quot;trees to executors to match instances with nodes. If true, the &quot;</span>
<span class="o">+</span> <span class="s2">&quot;algorithm will cache node IDs for each instance. Caching can speed &quot;</span>
<span class="o">+</span> <span class="s2">&quot;up training of deeper trees. Users can set how often should the cache &quot;</span>
<span class="o">+</span> <span class="s2">&quot;be checkpointed or disable it by setting checkpointInterval.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toBoolean</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="nb">super</span><span class="p">(</span><span class="n">_DecisionTreeParams</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">setLeafCol</span><span class="p">(</span><span class="bp">self</span><span class="p">:</span> <span class="s2">&quot;P&quot;</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="s2">&quot;P&quot;</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Sets the value of :py:attr:`leafCol`.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">leafCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getLeafCol</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of leafCol or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">leafCol</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getMaxDepth</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of maxDepth or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">maxDepth</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getMaxBins</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of maxBins or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">maxBins</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getMinInstancesPerNode</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of minInstancesPerNode or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">minInstancesPerNode</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getMinWeightFractionPerNode</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of minWeightFractionPerNode or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">minWeightFractionPerNode</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getMinInfoGain</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of minInfoGain or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">minInfoGain</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getMaxMemoryInMB</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of maxMemoryInMB or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">maxMemoryInMB</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getCacheNodeIds</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of cacheNodeIds or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">cacheNodeIds</span><span class="p">)</span>
<span class="nd">@inherit_doc</span>
<span class="k">class</span> <span class="nc">_TreeEnsembleModel</span><span class="p">(</span><span class="n">JavaPredictionModel</span><span class="p">[</span><span class="n">T</span><span class="p">]):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> (private abstraction)</span>
<span class="sd"> Represents a tree ensemble model.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="nd">@property</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;2.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">trees</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">Sequence</span><span class="p">[</span><span class="s2">&quot;_DecisionTreeModel&quot;</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Trees in this ensemble. Warning: These have null parent Estimators.&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="p">[</span><span class="n">_DecisionTreeModel</span><span class="p">(</span><span class="n">m</span><span class="p">)</span> <span class="k">for</span> <span class="n">m</span> <span class="ow">in</span> <span class="nb">list</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">&quot;trees&quot;</span><span class="p">))]</span>
<span class="nd">@property</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;2.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getNumTrees</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Number of trees in ensemble.&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">&quot;getNumTrees&quot;</span><span class="p">)</span>
<span class="nd">@property</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.5.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">treeWeights</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">List</span><span class="p">[</span><span class="nb">float</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Return the weights for each tree&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="nb">list</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">&quot;javaTreeWeights&quot;</span><span class="p">))</span>
<span class="nd">@property</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;2.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">totalNumNodes</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Total number of nodes, summed over all trees in the ensemble.&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">&quot;totalNumNodes&quot;</span><span class="p">)</span>
<span class="nd">@property</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;2.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">toDebugString</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;Full description of model.&quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">&quot;toDebugString&quot;</span><span class="p">)</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">predictLeaf</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="n">Vector</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Predict the indices of the leaves corresponding to the feature vector.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_call_java</span><span class="p">(</span><span class="s2">&quot;predictLeaf&quot;</span><span class="p">,</span> <span class="n">value</span><span class="p">)</span>
<span class="k">class</span> <span class="nc">_TreeEnsembleParams</span><span class="p">(</span><span class="n">_DecisionTreeParams</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Mixin for Decision Tree-based ensemble algorithms parameters.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">subsamplingRate</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;subsamplingRate&quot;</span><span class="p">,</span>
<span class="s2">&quot;Fraction of the training data &quot;</span> <span class="o">+</span> <span class="s2">&quot;used for learning each decision tree, in range (0, 1].&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toFloat</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">supportedFeatureSubsetStrategies</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;auto&quot;</span><span class="p">,</span> <span class="s2">&quot;all&quot;</span><span class="p">,</span> <span class="s2">&quot;onethird&quot;</span><span class="p">,</span> <span class="s2">&quot;sqrt&quot;</span><span class="p">,</span> <span class="s2">&quot;log2&quot;</span><span class="p">]</span>
<span class="n">featureSubsetStrategy</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;featureSubsetStrategy&quot;</span><span class="p">,</span>
<span class="s2">&quot;The number of features to consider for splits at each tree node. Supported &quot;</span>
<span class="o">+</span> <span class="s2">&quot;options: &#39;auto&#39; (choose automatically for task: If numTrees == 1, set to &quot;</span>
<span class="o">+</span> <span class="s2">&quot;&#39;all&#39;. If numTrees &gt; 1 (forest), set to &#39;sqrt&#39; for classification and to &quot;</span>
<span class="o">+</span> <span class="s2">&quot;&#39;onethird&#39; for regression), &#39;all&#39; (use all features), &#39;onethird&#39; (use &quot;</span>
<span class="o">+</span> <span class="s2">&quot;1/3 of the features), &#39;sqrt&#39; (use sqrt(number of features)), &#39;log2&#39; (use &quot;</span>
<span class="o">+</span> <span class="s2">&quot;log2(number of features)), &#39;n&#39; (when n is in the range (0, 1.0], use &quot;</span>
<span class="o">+</span> <span class="s2">&quot;n * number of features. When n is in the range (1, number of features), use&quot;</span>
<span class="o">+</span> <span class="s2">&quot; n features). default = &#39;auto&#39;&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="nb">super</span><span class="p">(</span><span class="n">_TreeEnsembleParams</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getSubsamplingRate</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of subsamplingRate or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">subsamplingRate</span><span class="p">)</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getFeatureSubsetStrategy</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of featureSubsetStrategy or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">featureSubsetStrategy</span><span class="p">)</span>
<span class="k">class</span> <span class="nc">_RandomForestParams</span><span class="p">(</span><span class="n">_TreeEnsembleParams</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Private class to track supported random forest parameters.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">numTrees</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;numTrees&quot;</span><span class="p">,</span>
<span class="s2">&quot;Number of trees to train (&gt;= 1).&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toInt</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">bootstrap</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">bool</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;bootstrap&quot;</span><span class="p">,</span>
<span class="s2">&quot;Whether bootstrap samples are used &quot;</span> <span class="s2">&quot;when building trees.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toBoolean</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="nb">super</span><span class="p">(</span><span class="n">_RandomForestParams</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getNumTrees</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">int</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of numTrees or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">numTrees</span><span class="p">)</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getBootstrap</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">bool</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of bootstrap or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">bootstrap</span><span class="p">)</span>
<span class="k">class</span> <span class="nc">_GBTParams</span><span class="p">(</span><span class="n">_TreeEnsembleParams</span><span class="p">,</span> <span class="n">HasMaxIter</span><span class="p">,</span> <span class="n">HasStepSize</span><span class="p">,</span> <span class="n">HasValidationIndicatorCol</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Private class to track supported GBT params.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">stepSize</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;stepSize&quot;</span><span class="p">,</span>
<span class="s2">&quot;Step size (a.k.a. learning rate) in interval (0, 1] for shrinking &quot;</span>
<span class="o">+</span> <span class="s2">&quot;the contribution of each estimator.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toFloat</span><span class="p">,</span>
<span class="p">)</span>
<span class="n">validationTol</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;validationTol&quot;</span><span class="p">,</span>
<span class="s2">&quot;Threshold for stopping early when fit with validation is used. &quot;</span>
<span class="o">+</span> <span class="s2">&quot;If the error rate on the validation input changes by less than the &quot;</span>
<span class="o">+</span> <span class="s2">&quot;validationTol, then learning will stop early (before `maxIter`). &quot;</span>
<span class="o">+</span> <span class="s2">&quot;This parameter is ignored when fit without validation is used.&quot;</span><span class="p">,</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toFloat</span><span class="p">,</span>
<span class="p">)</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;3.0.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getValidationTol</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of validationTol or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">validationTol</span><span class="p">)</span>
<span class="k">class</span> <span class="nc">_HasVarianceImpurity</span><span class="p">(</span><span class="n">Params</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Private class to track supported impurity measures.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">supportedImpurities</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;variance&quot;</span><span class="p">]</span>
<span class="n">impurity</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;impurity&quot;</span><span class="p">,</span>
<span class="s2">&quot;Criterion used for information gain calculation (case-insensitive). &quot;</span>
<span class="o">+</span> <span class="s2">&quot;Supported options: &quot;</span>
<span class="o">+</span> <span class="s2">&quot;, &quot;</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">supportedImpurities</span><span class="p">),</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="nb">super</span><span class="p">(</span><span class="n">_HasVarianceImpurity</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.4.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getImpurity</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of impurity or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">impurity</span><span class="p">)</span>
<span class="k">class</span> <span class="nc">_TreeClassifierParams</span><span class="p">(</span><span class="n">Params</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Private class to track supported impurity measures.</span>
<span class="sd"> .. versionadded:: 1.4.0</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">supportedImpurities</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="p">[</span><span class="s2">&quot;entropy&quot;</span><span class="p">,</span> <span class="s2">&quot;gini&quot;</span><span class="p">]</span>
<span class="n">impurity</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span>
<span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span>
<span class="s2">&quot;impurity&quot;</span><span class="p">,</span>
<span class="s2">&quot;Criterion used for information gain calculation (case-insensitive). &quot;</span>
<span class="o">+</span> <span class="s2">&quot;Supported options: &quot;</span>
<span class="o">+</span> <span class="s2">&quot;, &quot;</span><span class="o">.</span><span class="n">join</span><span class="p">(</span><span class="n">supportedImpurities</span><span class="p">),</span>
<span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span>
<span class="p">)</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="kc">None</span><span class="p">:</span>
<span class="nb">super</span><span class="p">(</span><span class="n">_TreeClassifierParams</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="nd">@since</span><span class="p">(</span><span class="s2">&quot;1.6.0&quot;</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">getImpurity</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">str</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Gets the value of impurity or its default value.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">impurity</span><span class="p">)</span>
<span class="k">class</span> <span class="nc">_TreeRegressorParams</span><span class="p">(</span><span class="n">_HasVarianceImpurity</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Private class to track supported impurity measures.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">pass</span>
</pre></div>
</article>
<footer class="bd-footer-article">
<div class="footer-article-items footer-article__inner">
<div class="footer-article-item"><!-- Previous / next buttons -->
<div class="prev-next-area">
</div></div>
</div>
</footer>
</div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script src="../../../_static/scripts/bootstrap.js?digest=e353d410970836974a52"></script>
<script src="../../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item"><p class="copyright">
Copyright @ 2024 The Apache Software Foundation, Licensed under the <a href="https://www.apache.org/licenses/LICENSE-2.0">Apache License, Version 2.0</a>.
</p></div>
<div class="footer-item">
<p class="sphinx-version">
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 4.5.0.
<br/>
</p>
</div>
</div>
<div class="footer-items__end">
<div class="footer-item"><p class="theme-version">
Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.13.3.
</p></div>
</div>
</div>
</footer>
</body>
</html>