| <!DOCTYPE html> |
| <!-- Generated by pkgdown: do not edit by hand --><html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"><meta name="description" content="A parallel FP-growth algorithm to mine frequent itemsets. |
| spark.fpGrowth fits a FP-growth model on a SparkDataFrame. Users can |
| spark.freqItemsets to get frequent itemsets, spark.associationRules to get |
| association rules, predict to make predictions on new data based on generated association |
| rules, and write.ml/read.ml to save/load fitted models. |
| For more details, see |
| |
| FP-growth."><!-- Inform modern browsers that this page supports both dark and light color schemes, |
| and the page author prefers light. --><meta name="color-scheme" content="dark light"><script> |
| // If `prefers-color-scheme` is not supported, fall back to light mode. |
| // i.e. In this case, inject the `light` CSS before the others, with |
| // no media filter so that it will be downloaded with highest priority. |
| if (window.matchMedia("(prefers-color-scheme: dark)").media === "not all") { |
| document.documentElement.style.display = "none"; |
| document.head.insertAdjacentHTML( |
| "beforeend", |
| "<link id=\"css\" rel=\"stylesheet\" href=\"https://bootswatch.com/5/flatly/bootstrap.css\" onload=\"document.documentElement.style.display = ''\">" |
| ); |
| } |
| </script><title>FP-growth — spark.fpGrowth • SparkR</title><script src="../deps/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"><link href="../deps/bootstrap-5.3.1/bootstrap.min.css" rel="stylesheet"><script src="../deps/bootstrap-5.3.1/bootstrap.bundle.min.js"></script><link href="../deps/font-awesome-6.4.2/css/all.min.css" rel="stylesheet"><link href="../deps/font-awesome-6.4.2/css/v4-shims.min.css" rel="stylesheet"><script src="../deps/headroom-0.11.0/headroom.min.js"></script><script src="../deps/headroom-0.11.0/jQuery.headroom.min.js"></script><script src="../deps/bootstrap-toc-1.0.1/bootstrap-toc.min.js"></script><script src="../deps/clipboard.js-2.0.11/clipboard.min.js"></script><script src="../deps/search-1.0.0/autocomplete.jquery.min.js"></script><script src="../deps/search-1.0.0/fuse.min.js"></script><script src="../deps/search-1.0.0/mark.min.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"><!-- bootstrap-toc --><script src="https://cdn.rawgit.com/afeld/bootstrap-toc/v1.0.1/dist/bootstrap-toc.min.js"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- search --><script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/6.4.6/fuse.js" integrity="sha512-zv6Ywkjyktsohkbp9bb45V6tEMoWhzFzXis+LrMehmJZZSys19Yxf1dopHx7WzIKxr5tK2dVcYmaCk2uqdjF4A==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/autocomplete.js/0.38.0/autocomplete.jquery.min.js" integrity="sha512-GU9ayf+66Xx2TmpxqJpliWbT5PiGYxpaG8rfnBEk1LL8l1KGkRShhngwdXK1UgqhAzWpZHSiYPc09/NwDQIGyg==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/mark.min.js" integrity="sha512-5CYOlHXGh6QpOFA/TeTylKLWfB3ftPsde7AnmhuitiTX4K5SqCLBeKro6sPS8ilsz1Q4NRx3v8Ko2IBiszzdww==" crossorigin="anonymous"></script><!-- pkgdown --><script src="../pkgdown.js"></script><link href="../extra.css" rel="stylesheet"><meta property="og:title" content="FP-growth — spark.fpGrowth"><meta property="og:description" content="A parallel FP-growth algorithm to mine frequent itemsets. |
| spark.fpGrowth fits a FP-growth model on a SparkDataFrame. Users can |
| spark.freqItemsets to get frequent itemsets, spark.associationRules to get |
| association rules, predict to make predictions on new data based on generated association |
| rules, and write.ml/read.ml to save/load fitted models. |
| For more details, see |
| |
| FP-growth."><!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]> |
| <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> |
| <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> |
| <![endif]--><!-- Flatly Theme - Light --><link id="css-light" rel="stylesheet" href="https://bootswatch.com/5/flatly/bootstrap.css" media="(prefers-color-scheme: light), (prefers-color-scheme: no-preference)"><!-- Darkly Theme - Dark --><link id="css-dark" rel="stylesheet" href="https://bootswatch.com/5/darkly/bootstrap.css" media="(prefers-color-scheme: dark)"><!-- preferably CSS --><link rel="stylesheet" href="../preferably.css"><link id="css-code-light" rel="stylesheet" href="../code-color-scheme-light.css" media="(prefers-color-scheme: light), (prefers-color-scheme: no-preference)"><link id="css-code-dark" rel="stylesheet" href="../code-color-scheme-dark.css" media="(prefers-color-scheme: dark)"><script src="../darkswitch.js"></script></head><body> |
| <a href="#main" class="visually-hidden-focusable">Skip to contents</a> |
| |
| |
| <nav class="navbar fixed-top navbar-dark navbar-expand-lg bg-primary"><div class="container"> |
| <a class="external-link navbar-brand" href="https://spark.apache.org/"> |
| <img src="https://spark.apache.org/images/spark-logo-rev.svg" alt="" max-height="100%"></a> |
| |
| <a class="navbar-brand me-2" href="../index.html">SparkR</a> |
| |
| <small class="nav-text text-muted me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="">4.0.0</small> |
| |
| |
| <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation"> |
| <span class="navbar-toggler-icon"></span> |
| </button> |
| |
| <div id="navbar" class="collapse navbar-collapse ms-2"> |
| <ul class="navbar-nav me-auto"><li class="active nav-item"><a class="nav-link" href="../reference/index.html">Reference</a></li> |
| <li class="nav-item dropdown"> |
| <button class="nav-link dropdown-toggle" type="button" id="dropdown-articles" data-bs-toggle="dropdown" aria-expanded="false" aria-haspopup="true">Articles</button> |
| <ul class="dropdown-menu" aria-labelledby="dropdown-articles"><li><a class="dropdown-item" href="../articles/sparkr-vignettes.html">SparkR - Practical Guide</a></li> |
| </ul></li> |
| </ul><form class="form-inline my-2 my-lg-0" role="search"> |
| <input type="search" class="form-control me-sm-2" aria-label="Toggle navigation" name="search-input" data-search-index="../search.json" id="search-input" placeholder="" autocomplete="off"></form> |
| |
| <ul class="navbar-nav"><li class="nav-item"><form class="form-inline" role="search"> |
| <input class="form-control" type="search" name="search-input" id="search-input" autocomplete="off" aria-label="Search site" placeholder="Search for" data-search-index="../search.json"></form></li> |
| |
| |
| <li> |
| <a class="external-link nav-link" id="css-toggle-btn" aria-label="github"> |
| <span class="fas fa fas fa-adjust fa-lg"></span> |
| </a> |
| </li> |
| |
| |
| |
| </ul></div> |
| |
| |
| </div> |
| </nav><div class="container template-reference-topic"> |
| <div class="row"> |
| <main id="main" class="col-md-9"><div class="page-header"> |
| |
| <h1>FP-growth</h1> |
| |
| <div class="d-none name"><code>spark.fpGrowth.Rd</code></div> |
| </div> |
| |
| <div class="ref-description section level2"> |
| <p>A parallel FP-growth algorithm to mine frequent itemsets. |
| <code>spark.fpGrowth</code> fits a FP-growth model on a SparkDataFrame. Users can |
| <code>spark.freqItemsets</code> to get frequent itemsets, <code>spark.associationRules</code> to get |
| association rules, <code>predict</code> to make predictions on new data based on generated association |
| rules, and <code>write.ml</code>/<code>read.ml</code> to save/load fitted models. |
| For more details, see |
| <a href="https://spark.apache.org/docs/latest/mllib-frequent-pattern-mining.html#fp-growth" class="external-link"> |
| FP-growth</a>.</p> |
| </div> |
| |
| <div class="section level2"> |
| <h2 id="ref-usage">Usage<a class="anchor" aria-label="anchor" href="#ref-usage"></a></h2> |
| <div class="sourceCode"><pre class="sourceCode r"><code><span><span class="fu">spark.fpGrowth</span><span class="op">(</span><span class="va">data</span>, <span class="va">...</span><span class="op">)</span></span> |
| <span></span> |
| <span><span class="fu">spark.freqItemsets</span><span class="op">(</span><span class="va">object</span><span class="op">)</span></span> |
| <span></span> |
| <span><span class="fu">spark.associationRules</span><span class="op">(</span><span class="va">object</span><span class="op">)</span></span> |
| <span></span> |
| <span><span class="co"># S4 method for class 'SparkDataFrame'</span></span> |
| <span><span class="fu">spark.fpGrowth</span><span class="op">(</span></span> |
| <span> <span class="va">data</span>,</span> |
| <span> minSupport <span class="op">=</span> <span class="fl">0.3</span>,</span> |
| <span> minConfidence <span class="op">=</span> <span class="fl">0.8</span>,</span> |
| <span> itemsCol <span class="op">=</span> <span class="st">"items"</span>,</span> |
| <span> numPartitions <span class="op">=</span> <span class="cn">NULL</span></span> |
| <span><span class="op">)</span></span> |
| <span></span> |
| <span><span class="co"># S4 method for class 'FPGrowthModel'</span></span> |
| <span><span class="fu">spark.freqItemsets</span><span class="op">(</span><span class="va">object</span><span class="op">)</span></span> |
| <span></span> |
| <span><span class="co"># S4 method for class 'FPGrowthModel'</span></span> |
| <span><span class="fu">spark.associationRules</span><span class="op">(</span><span class="va">object</span><span class="op">)</span></span> |
| <span></span> |
| <span><span class="co"># S4 method for class 'FPGrowthModel'</span></span> |
| <span><span class="fu"><a href="predict.html">predict</a></span><span class="op">(</span><span class="va">object</span>, <span class="va">newData</span><span class="op">)</span></span> |
| <span></span> |
| <span><span class="co"># S4 method for class 'FPGrowthModel,character'</span></span> |
| <span><span class="fu"><a href="write.ml.html">write.ml</a></span><span class="op">(</span><span class="va">object</span>, <span class="va">path</span>, overwrite <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div> |
| </div> |
| |
| <div class="section level2"> |
| <h2 id="arguments">Arguments<a class="anchor" aria-label="anchor" href="#arguments"></a></h2> |
| |
| |
| <dl><dt id="arg-data">data<a class="anchor" aria-label="anchor" href="#arg-data"></a></dt> |
| <dd><p>A SparkDataFrame for training.</p></dd> |
| |
| |
| <dt id="arg--">...<a class="anchor" aria-label="anchor" href="#arg--"></a></dt> |
| <dd><p>additional argument(s) passed to the method.</p></dd> |
| |
| |
| <dt id="arg-object">object<a class="anchor" aria-label="anchor" href="#arg-object"></a></dt> |
| <dd><p>a fitted FPGrowth model.</p></dd> |
| |
| |
| <dt id="arg-minsupport">minSupport<a class="anchor" aria-label="anchor" href="#arg-minsupport"></a></dt> |
| <dd><p>Minimal support level.</p></dd> |
| |
| |
| <dt id="arg-minconfidence">minConfidence<a class="anchor" aria-label="anchor" href="#arg-minconfidence"></a></dt> |
| <dd><p>Minimal confidence level.</p></dd> |
| |
| |
| <dt id="arg-itemscol">itemsCol<a class="anchor" aria-label="anchor" href="#arg-itemscol"></a></dt> |
| <dd><p>Features column name.</p></dd> |
| |
| |
| <dt id="arg-numpartitions">numPartitions<a class="anchor" aria-label="anchor" href="#arg-numpartitions"></a></dt> |
| <dd><p>Number of partitions used for fitting.</p></dd> |
| |
| |
| <dt id="arg-newdata">newData<a class="anchor" aria-label="anchor" href="#arg-newdata"></a></dt> |
| <dd><p>a SparkDataFrame for testing.</p></dd> |
| |
| |
| <dt id="arg-path">path<a class="anchor" aria-label="anchor" href="#arg-path"></a></dt> |
| <dd><p>the directory where the model is saved.</p></dd> |
| |
| |
| <dt id="arg-overwrite">overwrite<a class="anchor" aria-label="anchor" href="#arg-overwrite"></a></dt> |
| <dd><p>logical value indicating whether to overwrite if the output path |
| already exists. Default is FALSE which means throw exception |
| if the output path exists.</p></dd> |
| |
| </dl></div> |
| <div class="section level2"> |
| <h2 id="value">Value<a class="anchor" aria-label="anchor" href="#value"></a></h2> |
| <p><code>spark.fpGrowth</code> returns a fitted FPGrowth model.</p> |
| <p>A <code>SparkDataFrame</code> with frequent itemsets. |
| The <code>SparkDataFrame</code> contains two columns: |
| <code>items</code> (an array of the same type as the input column) |
| and <code>freq</code> (frequency of the itemset).</p> |
| <p>A <code>SparkDataFrame</code> with association rules. |
| The <code>SparkDataFrame</code> contains five columns: |
| <code>antecedent</code> (an array of the same type as the input column), |
| <code>consequent</code> (an array of the same type as the input column), |
| <code>confidence</code> (confidence for the rule) |
| <code>lift</code> (lift for the rule) |
| and <code>support</code> (support for the rule)</p> |
| <p><code>predict</code> returns a SparkDataFrame containing predicted values.</p> |
| </div> |
| <div class="section level2"> |
| <h2 id="note">Note<a class="anchor" aria-label="anchor" href="#note"></a></h2> |
| <p>spark.fpGrowth since 2.2.0</p> |
| <p>spark.freqItemsets(FPGrowthModel) since 2.2.0</p> |
| <p>spark.associationRules(FPGrowthModel) since 2.2.0</p> |
| <p>predict(FPGrowthModel) since 2.2.0</p> |
| <p>write.ml(FPGrowthModel, character) since 2.2.0</p> |
| </div> |
| <div class="section level2"> |
| <h2 id="see-also">See also<a class="anchor" aria-label="anchor" href="#see-also"></a></h2> |
| <div class="dont-index"><p><a href="read.ml.html">read.ml</a></p></div> |
| </div> |
| |
| <div class="section level2"> |
| <h2 id="ref-examples">Examples<a class="anchor" aria-label="anchor" href="#ref-examples"></a></h2> |
| <div class="sourceCode"><pre class="sourceCode r"><code><span class="r-in"><span><span class="kw">if</span> <span class="op">(</span><span class="cn">FALSE</span><span class="op">)</span> <span class="op">{</span> <span class="co"># \dontrun{</span></span></span> |
| <span class="r-in"><span><span class="va">raw_data</span> <span class="op"><-</span> <span class="fu"><a href="read.df.html">read.df</a></span><span class="op">(</span></span></span> |
| <span class="r-in"><span> <span class="st">"data/mllib/sample_fpgrowth.txt"</span>,</span></span> |
| <span class="r-in"><span> source <span class="op">=</span> <span class="st">"csv"</span>,</span></span> |
| <span class="r-in"><span> schema <span class="op">=</span> <span class="fu"><a href="structType.html">structType</a></span><span class="op">(</span><span class="fu"><a href="structField.html">structField</a></span><span class="op">(</span><span class="st">"raw_items"</span>, <span class="st">"string"</span><span class="op">)</span><span class="op">)</span><span class="op">)</span></span></span> |
| <span class="r-in"><span></span></span> |
| <span class="r-in"><span><span class="va">data</span> <span class="op"><-</span> <span class="fu"><a href="selectExpr.html">selectExpr</a></span><span class="op">(</span><span class="va">raw_data</span>, <span class="st">"split(raw_items, ' ') as items"</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="va">model</span> <span class="op"><-</span> <span class="fu">spark.fpGrowth</span><span class="op">(</span><span class="va">data</span><span class="op">)</span></span></span> |
| <span class="r-in"><span></span></span> |
| <span class="r-in"><span><span class="co"># Show frequent itemsets</span></span></span> |
| <span class="r-in"><span><span class="va">frequent_itemsets</span> <span class="op"><-</span> <span class="fu">spark.freqItemsets</span><span class="op">(</span><span class="va">model</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="fu"><a href="showDF.html">showDF</a></span><span class="op">(</span><span class="va">frequent_itemsets</span><span class="op">)</span></span></span> |
| <span class="r-in"><span></span></span> |
| <span class="r-in"><span><span class="co"># Show association rules</span></span></span> |
| <span class="r-in"><span><span class="va">association_rules</span> <span class="op"><-</span> <span class="fu">spark.associationRules</span><span class="op">(</span><span class="va">model</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="fu"><a href="showDF.html">showDF</a></span><span class="op">(</span><span class="va">association_rules</span><span class="op">)</span></span></span> |
| <span class="r-in"><span></span></span> |
| <span class="r-in"><span><span class="co"># Predict on new data</span></span></span> |
| <span class="r-in"><span><span class="va">new_itemsets</span> <span class="op"><-</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span>items <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"t"</span>, <span class="st">"t,s"</span><span class="op">)</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="va">new_data</span> <span class="op"><-</span> <span class="fu"><a href="selectExpr.html">selectExpr</a></span><span class="op">(</span><span class="fu"><a href="createDataFrame.html">createDataFrame</a></span><span class="op">(</span><span class="va">new_itemsets</span><span class="op">)</span>, <span class="st">"split(items, ',') as items"</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="fu"><a href="predict.html">predict</a></span><span class="op">(</span><span class="va">model</span>, <span class="va">new_data</span><span class="op">)</span></span></span> |
| <span class="r-in"><span></span></span> |
| <span class="r-in"><span><span class="co"># Save and load model</span></span></span> |
| <span class="r-in"><span><span class="va">path</span> <span class="op"><-</span> <span class="st">"/path/to/model"</span></span></span> |
| <span class="r-in"><span><span class="fu"><a href="write.ml.html">write.ml</a></span><span class="op">(</span><span class="va">model</span>, <span class="va">path</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="fu"><a href="read.ml.html">read.ml</a></span><span class="op">(</span><span class="va">path</span><span class="op">)</span></span></span> |
| <span class="r-in"><span></span></span> |
| <span class="r-in"><span><span class="co"># Optional arguments</span></span></span> |
| <span class="r-in"><span><span class="va">baskets_data</span> <span class="op"><-</span> <span class="fu"><a href="selectExpr.html">selectExpr</a></span><span class="op">(</span><span class="fu"><a href="createDataFrame.html">createDataFrame</a></span><span class="op">(</span><span class="va">itemsets</span><span class="op">)</span>, <span class="st">"split(items, ',') as baskets"</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="va">another_model</span> <span class="op"><-</span> <span class="fu">spark.fpGrowth</span><span class="op">(</span><span class="va">data</span>, minSupport <span class="op">=</span> <span class="fl">0.1</span>, minConfidence <span class="op">=</span> <span class="fl">0.5</span>,</span></span> |
| <span class="r-in"><span> itemsCol <span class="op">=</span> <span class="st">"baskets"</span>, numPartitions <span class="op">=</span> <span class="fl">10</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="op">}</span> <span class="co"># }</span></span></span> |
| </code></pre></div> |
| </div> |
| </main><aside class="col-md-3"><nav id="toc" aria-label="Table of contents"><h2>On this page</h2> |
| </nav></aside></div> |
| |
| |
| <footer><div class="copyright"> |
| <p></p><p>Developed by <a href="https://www.apache.org/" class="external-link"> The Apache Software Foundation</a>.</p> |
| </div> |
| |
| <div class="pkgdown"> |
| <p></p><p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.1.0.</p> |
| <p class="preferably">Using <a href="https://preferably.amirmasoudabdol.name/?source=footer" class="external-link">preferably</a> template.</p> |
| </div> |
| |
| </footer></div> |
| |
| |
| |
| |
| |
| </body></html> |
| |