| |
| |
| <!DOCTYPE html> |
| |
| |
| <html > |
| |
| <head> |
| <meta charset="utf-8" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1.0" /> |
| <title>pyspark.ml.functions — PySpark 4.0.0-preview1 documentation</title> |
| |
| |
| |
| <script data-cfasync="false"> |
| document.documentElement.dataset.mode = localStorage.getItem("mode") || ""; |
| document.documentElement.dataset.theme = localStorage.getItem("theme") || "light"; |
| </script> |
| |
| <!-- Loaded before other Sphinx assets --> |
| <link href="../../../_static/styles/theme.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link href="../../../_static/styles/bootstrap.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link href="../../../_static/styles/pydata-sphinx-theme.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| |
| |
| <link href="../../../_static/vendor/fontawesome/6.1.2/css/all.min.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2" /> |
| |
| <link rel="stylesheet" type="text/css" href="../../../_static/pygments.css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" /> |
| |
| <!-- Pre-loaded scripts that we'll load fully later --> |
| <link rel="preload" as="script" href="../../../_static/scripts/bootstrap.js?digest=e353d410970836974a52" /> |
| <link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52" /> |
| |
| <script data-url_root="../../../" id="documentation_options" src="../../../_static/documentation_options.js"></script> |
| <script src="../../../_static/jquery.js"></script> |
| <script src="../../../_static/underscore.js"></script> |
| <script src="../../../_static/doctools.js"></script> |
| <script src="../../../_static/clipboard.min.js"></script> |
| <script src="../../../_static/copybutton.js"></script> |
| <script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script> |
| <script>DOCUMENTATION_OPTIONS.pagename = '_modules/pyspark/ml/functions';</script> |
| <link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/ml/functions.html" /> |
| <link rel="search" title="Search" href="../../../search.html" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1" /> |
| <meta name="docsearch:language" content="None"> |
| |
| |
| <!-- Matomo --> |
| <script type="text/javascript"> |
| var _paq = window._paq = window._paq || []; |
| /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ |
| _paq.push(["disableCookies"]); |
| _paq.push(['trackPageView']); |
| _paq.push(['enableLinkTracking']); |
| (function() { |
| var u="https://analytics.apache.org/"; |
| _paq.push(['setTrackerUrl', u+'matomo.php']); |
| _paq.push(['setSiteId', '40']); |
| var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; |
| g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); |
| })(); |
| </script> |
| <!-- End Matomo Code --> |
| |
| </head> |
| |
| |
| <body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode=""> |
| |
| |
| |
| <a class="skip-link" href="#main-content">Skip to main content</a> |
| |
| <input type="checkbox" |
| class="sidebar-toggle" |
| name="__primary" |
| id="__primary"/> |
| <label class="overlay overlay-primary" for="__primary"></label> |
| |
| <input type="checkbox" |
| class="sidebar-toggle" |
| name="__secondary" |
| id="__secondary"/> |
| <label class="overlay overlay-secondary" for="__secondary"></label> |
| |
| <div class="search-button__wrapper"> |
| <div class="search-button__overlay"></div> |
| <div class="search-button__search-container"> |
| <form class="bd-search d-flex align-items-center" |
| action="../../../search.html" |
| method="get"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| <input type="search" |
| class="form-control" |
| name="q" |
| id="search-input" |
| placeholder="Search the docs ..." |
| aria-label="Search the docs ..." |
| autocomplete="off" |
| autocorrect="off" |
| autocapitalize="off" |
| spellcheck="false"/> |
| <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span> |
| </form></div> |
| </div> |
| |
| <nav class="bd-header navbar navbar-expand-lg bd-navbar"> |
| <div class="bd-header__inner bd-page-width"> |
| <label class="sidebar-toggle primary-toggle" for="__primary"> |
| <span class="fa-solid fa-bars"></span> |
| </label> |
| |
| <div class="navbar-header-items__start"> |
| |
| <div class="navbar-item"> |
| |
| |
| <a class="navbar-brand logo" href="../../../index.html"> |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| <img src="../../../_static/spark-logo-light.png" class="logo__image only-light" alt="Logo image"/> |
| <script>document.write(`<img src="../../../_static/spark-logo-dark.png" class="logo__image only-dark" alt="Logo image"/>`);</script> |
| |
| |
| </a></div> |
| |
| </div> |
| |
| |
| <div class="col-lg-9 navbar-header-items"> |
| |
| <div class="me-auto navbar-header-items__center"> |
| |
| <div class="navbar-item"><nav class="navbar-nav"> |
| <p class="sidebar-header-items__title" |
| role="heading" |
| aria-level="1" |
| aria-label="Site Navigation"> |
| Site Navigation |
| </p> |
| <ul class="bd-navbar-elements navbar-nav"> |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../index.html"> |
| Overview |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../getting_started/index.html"> |
| Getting Started |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../user_guide/index.html"> |
| User Guides |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../reference/index.html"> |
| API Reference |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../development/index.html"> |
| Development |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../migration_guide/index.html"> |
| Migration Guides |
| </a> |
| </li> |
| |
| </ul> |
| </nav></div> |
| |
| </div> |
| |
| |
| <div class="navbar-header-items__end"> |
| |
| <div class="navbar-item navbar-persistent--container"> |
| |
| <script> |
| document.write(` |
| <button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| </button> |
| `); |
| </script> |
| </div> |
| |
| |
| <div class="navbar-item"><!-- |
| Licensed to the Apache Software Foundation (ASF) under one or more |
| contributor license agreements. See the NOTICE file distributed with |
| this work for additional information regarding copyright ownership. |
| The ASF licenses this file to You under the Apache License, Version 2.0 |
| (the "License"); you may not use this file except in compliance with |
| the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| --> |
| |
| <div id="version-button" class="dropdown"> |
| <button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown"> |
| 4.0.0-preview1 |
| <span class="caret"></span> |
| </button> |
| <div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button"> |
| <!-- dropdown will be populated by javascript on page load --> |
| </div> |
| </div> |
| |
| <script type="text/javascript"> |
| // Function to construct the target URL from the JSON components |
| function buildURL(entry) { |
| var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja |
| template = template.replace("{version}", entry.version); |
| return template; |
| } |
| |
| // Function to check if corresponding page path exists in other version of docs |
| // and, if so, go there instead of the homepage of the other docs version |
| function checkPageExistsAndRedirect(event) { |
| const currentFilePath = "_modules/pyspark/ml/functions.html", |
| otherDocsHomepage = event.target.getAttribute("href"); |
| let tryUrl = `${otherDocsHomepage}${currentFilePath}`; |
| $.ajax({ |
| type: 'HEAD', |
| url: tryUrl, |
| // if the page exists, go there |
| success: function() { |
| location.href = tryUrl; |
| } |
| }).fail(function() { |
| location.href = otherDocsHomepage; |
| }); |
| return false; |
| } |
| |
| // Function to populate the version switcher |
| (function () { |
| // get JSON config |
| $.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) { |
| // create the nodes first (before AJAX calls) to ensure the order is |
| // correct (for now, links will go to doc version homepage) |
| $.each(data, function(index, entry) { |
| // if no custom name specified (e.g., "latest"), use version string |
| if (!("name" in entry)) { |
| entry.name = entry.version; |
| } |
| // construct the appropriate URL, and add it to the dropdown |
| entry.url = buildURL(entry); |
| const node = document.createElement("a"); |
| node.setAttribute("class", "list-group-item list-group-item-action py-1"); |
| node.setAttribute("href", `${entry.url}`); |
| node.textContent = `${entry.name}`; |
| node.onclick = checkPageExistsAndRedirect; |
| $("#version_switcher").append(node); |
| }); |
| }); |
| })(); |
| </script></div> |
| |
| <div class="navbar-item"> |
| <script> |
| document.write(` |
| <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span> |
| <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span> |
| <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span> |
| </button> |
| `); |
| </script></div> |
| |
| <div class="navbar-item"><ul class="navbar-icon-links navbar-nav" |
| aria-label="Icon Links"> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span> |
| <label class="sr-only">GitHub</label></a> |
| </li> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span> |
| <label class="sr-only">PyPI</label></a> |
| </li> |
| </ul></div> |
| |
| </div> |
| |
| </div> |
| |
| |
| <div class="navbar-persistent--mobile"> |
| <script> |
| document.write(` |
| <button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| </button> |
| `); |
| </script> |
| </div> |
| |
| |
| |
| </div> |
| |
| </nav> |
| |
| <div class="bd-container"> |
| <div class="bd-container__inner bd-page-width"> |
| |
| <div class="bd-sidebar-primary bd-sidebar hide-on-wide"> |
| |
| |
| |
| <div class="sidebar-header-items sidebar-primary__section"> |
| |
| |
| <div class="sidebar-header-items__center"> |
| |
| <div class="navbar-item"><nav class="navbar-nav"> |
| <p class="sidebar-header-items__title" |
| role="heading" |
| aria-level="1" |
| aria-label="Site Navigation"> |
| Site Navigation |
| </p> |
| <ul class="bd-navbar-elements navbar-nav"> |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../index.html"> |
| Overview |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../getting_started/index.html"> |
| Getting Started |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../user_guide/index.html"> |
| User Guides |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../reference/index.html"> |
| API Reference |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../development/index.html"> |
| Development |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../migration_guide/index.html"> |
| Migration Guides |
| </a> |
| </li> |
| |
| </ul> |
| </nav></div> |
| |
| </div> |
| |
| |
| |
| <div class="sidebar-header-items__end"> |
| |
| <div class="navbar-item"><!-- |
| Licensed to the Apache Software Foundation (ASF) under one or more |
| contributor license agreements. See the NOTICE file distributed with |
| this work for additional information regarding copyright ownership. |
| The ASF licenses this file to You under the Apache License, Version 2.0 |
| (the "License"); you may not use this file except in compliance with |
| the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| --> |
| |
| <div id="version-button" class="dropdown"> |
| <button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown"> |
| 4.0.0-preview1 |
| <span class="caret"></span> |
| </button> |
| <div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button"> |
| <!-- dropdown will be populated by javascript on page load --> |
| </div> |
| </div> |
| |
| <script type="text/javascript"> |
| // Function to construct the target URL from the JSON components |
| function buildURL(entry) { |
| var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja |
| template = template.replace("{version}", entry.version); |
| return template; |
| } |
| |
| // Function to check if corresponding page path exists in other version of docs |
| // and, if so, go there instead of the homepage of the other docs version |
| function checkPageExistsAndRedirect(event) { |
| const currentFilePath = "_modules/pyspark/ml/functions.html", |
| otherDocsHomepage = event.target.getAttribute("href"); |
| let tryUrl = `${otherDocsHomepage}${currentFilePath}`; |
| $.ajax({ |
| type: 'HEAD', |
| url: tryUrl, |
| // if the page exists, go there |
| success: function() { |
| location.href = tryUrl; |
| } |
| }).fail(function() { |
| location.href = otherDocsHomepage; |
| }); |
| return false; |
| } |
| |
| // Function to populate the version switcher |
| (function () { |
| // get JSON config |
| $.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) { |
| // create the nodes first (before AJAX calls) to ensure the order is |
| // correct (for now, links will go to doc version homepage) |
| $.each(data, function(index, entry) { |
| // if no custom name specified (e.g., "latest"), use version string |
| if (!("name" in entry)) { |
| entry.name = entry.version; |
| } |
| // construct the appropriate URL, and add it to the dropdown |
| entry.url = buildURL(entry); |
| const node = document.createElement("a"); |
| node.setAttribute("class", "list-group-item list-group-item-action py-1"); |
| node.setAttribute("href", `${entry.url}`); |
| node.textContent = `${entry.name}`; |
| node.onclick = checkPageExistsAndRedirect; |
| $("#version_switcher").append(node); |
| }); |
| }); |
| })(); |
| </script></div> |
| |
| <div class="navbar-item"> |
| <script> |
| document.write(` |
| <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span> |
| <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span> |
| <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span> |
| </button> |
| `); |
| </script></div> |
| |
| <div class="navbar-item"><ul class="navbar-icon-links navbar-nav" |
| aria-label="Icon Links"> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span> |
| <label class="sr-only">GitHub</label></a> |
| </li> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span> |
| <label class="sr-only">PyPI</label></a> |
| </li> |
| </ul></div> |
| |
| </div> |
| |
| </div> |
| |
| |
| <div class="sidebar-primary-items__end sidebar-primary__section"> |
| </div> |
| |
| <div id="rtd-footer-container"></div> |
| |
| |
| </div> |
| |
| <main id="main-content" class="bd-main"> |
| |
| |
| <div class="bd-content"> |
| <div class="bd-article-container"> |
| |
| <div class="bd-header-article"> |
| <div class="header-article-items header-article__inner"> |
| |
| <div class="header-article-items__start"> |
| |
| <div class="header-article-item"> |
| |
| |
| |
| <nav aria-label="Breadcrumbs"> |
| <ul class="bd-breadcrumbs" role="navigation" aria-label="Breadcrumb"> |
| |
| <li class="breadcrumb-item breadcrumb-home"> |
| <a href="../../../index.html" class="nav-link" aria-label="Home"> |
| <i class="fa-solid fa-home"></i> |
| </a> |
| </li> |
| |
| <li class="breadcrumb-item"><a href="../../index.html" class="nav-link">Module code</a></li> |
| |
| <li class="breadcrumb-item active" aria-current="page">pyspark.ml.functions</li> |
| </ul> |
| </nav> |
| </div> |
| |
| </div> |
| |
| |
| </div> |
| </div> |
| |
| |
| |
| |
| <div id="searchbox"></div> |
| <article class="bd-article" role="main"> |
| |
| <h1>Source code for pyspark.ml.functions</h1><div class="highlight"><pre> |
| <span></span><span class="c1">#</span> |
| <span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span> |
| <span class="c1"># contributor license agreements. See the NOTICE file distributed with</span> |
| <span class="c1"># this work for additional information regarding copyright ownership.</span> |
| <span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span> |
| <span class="c1"># (the "License"); you may not use this file except in compliance with</span> |
| <span class="c1"># the License. You may obtain a copy of the License at</span> |
| <span class="c1">#</span> |
| <span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span> |
| <span class="c1">#</span> |
| <span class="c1"># Unless required by applicable law or agreed to in writing, software</span> |
| <span class="c1"># distributed under the License is distributed on an "AS IS" BASIS,</span> |
| <span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span> |
| <span class="c1"># See the License for the specific language governing permissions and</span> |
| <span class="c1"># limitations under the License.</span> |
| <span class="c1">#</span> |
| <span class="kn">from</span> <span class="nn">__future__</span> <span class="kn">import</span> <span class="n">annotations</span> |
| |
| <span class="kn">import</span> <span class="nn">inspect</span> |
| <span class="kn">import</span> <span class="nn">uuid</span> |
| <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Any</span><span class="p">,</span> <span class="n">Callable</span><span class="p">,</span> <span class="n">Iterator</span><span class="p">,</span> <span class="n">List</span><span class="p">,</span> <span class="n">Mapping</span><span class="p">,</span> <span class="n">TYPE_CHECKING</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">,</span> <span class="n">Union</span><span class="p">,</span> <span class="n">Optional</span> |
| |
| <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span> |
| |
| <span class="k">try</span><span class="p">:</span> |
| <span class="kn">import</span> <span class="nn">pandas</span> <span class="k">as</span> <span class="nn">pd</span> |
| <span class="k">except</span> <span class="ne">ImportError</span><span class="p">:</span> |
| <span class="k">pass</span> <span class="c1"># Let it throw a better error message later when the API is invoked.</span> |
| |
| <span class="kn">from</span> <span class="nn">pyspark.sql.functions</span> <span class="kn">import</span> <span class="n">pandas_udf</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.column</span> <span class="kn">import</span> <span class="n">Column</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.types</span> <span class="kn">import</span> <span class="p">(</span> |
| <span class="n">ArrayType</span><span class="p">,</span> |
| <span class="n">ByteType</span><span class="p">,</span> |
| <span class="n">DataType</span><span class="p">,</span> |
| <span class="n">DoubleType</span><span class="p">,</span> |
| <span class="n">FloatType</span><span class="p">,</span> |
| <span class="n">IntegerType</span><span class="p">,</span> |
| <span class="n">LongType</span><span class="p">,</span> |
| <span class="n">ShortType</span><span class="p">,</span> |
| <span class="n">StringType</span><span class="p">,</span> |
| <span class="n">StructType</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="kn">from</span> <span class="nn">pyspark.ml.util</span> <span class="kn">import</span> <span class="n">try_remote_functions</span> |
| |
| <span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql._typing</span> <span class="kn">import</span> <span class="n">UserDefinedFunctionLike</span> |
| |
| <span class="n">supported_scalar_types</span> <span class="o">=</span> <span class="p">(</span> |
| <span class="n">ByteType</span><span class="p">,</span> |
| <span class="n">ShortType</span><span class="p">,</span> |
| <span class="n">IntegerType</span><span class="p">,</span> |
| <span class="n">LongType</span><span class="p">,</span> |
| <span class="n">FloatType</span><span class="p">,</span> |
| <span class="n">DoubleType</span><span class="p">,</span> |
| <span class="n">StringType</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="c1"># Callable type for end user predict functions that take a variable number of ndarrays as</span> |
| <span class="c1"># input and returns one of the following as output:</span> |
| <span class="c1"># - single ndarray (single output)</span> |
| <span class="c1"># - dictionary of named ndarrays (multiple outputs represented in columnar form)</span> |
| <span class="c1"># - list of dictionaries of named ndarrays (multiple outputs represented in row form)</span> |
| <span class="n">PredictBatchFunction</span> <span class="o">=</span> <span class="n">Callable</span><span class="p">[</span> |
| <span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">],</span> <span class="n">Union</span><span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">,</span> <span class="n">Mapping</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">],</span> <span class="n">List</span><span class="p">[</span><span class="n">Mapping</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">dtype</span><span class="p">]]]</span> |
| <span class="p">]</span> |
| |
| |
| <div class="viewcode-block" id="vector_to_array"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.functions.vector_to_array.html#pyspark.ml.functions.vector_to_array">[docs]</a><span class="nd">@try_remote_functions</span> |
| <span class="k">def</span> <span class="nf">vector_to_array</span><span class="p">(</span><span class="n">col</span><span class="p">:</span> <span class="n">Column</span><span class="p">,</span> <span class="n">dtype</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"float64"</span><span class="p">)</span> <span class="o">-></span> <span class="n">Column</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Converts a column of MLlib sparse/dense vectors into a column of dense arrays.</span> |
| |
| <span class="sd"> .. versionadded:: 3.0.0</span> |
| |
| <span class="sd"> .. versionchanged:: 3.5.0</span> |
| <span class="sd"> Supports Spark Connect.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> col : :py:class:`pyspark.sql.Column` or str</span> |
| <span class="sd"> Input column</span> |
| <span class="sd"> dtype : str, optional</span> |
| <span class="sd"> The data type of the output array. Valid values: "float64" or "float32".</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :py:class:`pyspark.sql.Column`</span> |
| <span class="sd"> The converted column of dense arrays.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> from pyspark.ml.linalg import Vectors</span> |
| <span class="sd"> >>> from pyspark.ml.functions import vector_to_array</span> |
| <span class="sd"> >>> from pyspark.mllib.linalg import Vectors as OldVectors</span> |
| <span class="sd"> >>> df = spark.createDataFrame([</span> |
| <span class="sd"> ... (Vectors.dense(1.0, 2.0, 3.0), OldVectors.dense(10.0, 20.0, 30.0)),</span> |
| <span class="sd"> ... (Vectors.sparse(3, [(0, 2.0), (2, 3.0)]),</span> |
| <span class="sd"> ... OldVectors.sparse(3, [(0, 20.0), (2, 30.0)]))],</span> |
| <span class="sd"> ... ["vec", "oldVec"])</span> |
| <span class="sd"> >>> df1 = df.select(vector_to_array("vec").alias("vec"),</span> |
| <span class="sd"> ... vector_to_array("oldVec").alias("oldVec"))</span> |
| <span class="sd"> >>> df1.collect()</span> |
| <span class="sd"> [Row(vec=[1.0, 2.0, 3.0], oldVec=[10.0, 20.0, 30.0]),</span> |
| <span class="sd"> Row(vec=[2.0, 0.0, 3.0], oldVec=[20.0, 0.0, 30.0])]</span> |
| <span class="sd"> >>> df2 = df.select(vector_to_array("vec", "float32").alias("vec"),</span> |
| <span class="sd"> ... vector_to_array("oldVec", "float32").alias("oldVec"))</span> |
| <span class="sd"> >>> df2.collect()</span> |
| <span class="sd"> [Row(vec=[1.0, 2.0, 3.0], oldVec=[10.0, 20.0, 30.0]),</span> |
| <span class="sd"> Row(vec=[2.0, 0.0, 3.0], oldVec=[20.0, 0.0, 30.0])]</span> |
| <span class="sd"> >>> df1.schema.fields</span> |
| <span class="sd"> [StructField('vec', ArrayType(DoubleType(), False), False),</span> |
| <span class="sd"> StructField('oldVec', ArrayType(DoubleType(), False), False)]</span> |
| <span class="sd"> >>> df2.schema.fields</span> |
| <span class="sd"> [StructField('vec', ArrayType(FloatType(), False), False),</span> |
| <span class="sd"> StructField('oldVec', ArrayType(FloatType(), False), False)]</span> |
| <span class="sd"> """</span> |
| <span class="kn">from</span> <span class="nn">pyspark.core.context</span> <span class="kn">import</span> <span class="n">SparkContext</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.classic.column</span> <span class="kn">import</span> <span class="n">Column</span><span class="p">,</span> <span class="n">_to_java_column</span> |
| |
| <span class="n">sc</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_active_spark_context</span> |
| <span class="k">assert</span> <span class="n">sc</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="k">return</span> <span class="n">Column</span><span class="p">(</span> |
| <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">ml</span><span class="o">.</span><span class="n">functions</span><span class="o">.</span><span class="n">vector_to_array</span><span class="p">(</span><span class="n">_to_java_column</span><span class="p">(</span><span class="n">col</span><span class="p">),</span> <span class="n">dtype</span><span class="p">)</span> |
| <span class="p">)</span></div> |
| |
| |
| <div class="viewcode-block" id="array_to_vector"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.functions.array_to_vector.html#pyspark.ml.functions.array_to_vector">[docs]</a><span class="nd">@try_remote_functions</span> |
| <span class="k">def</span> <span class="nf">array_to_vector</span><span class="p">(</span><span class="n">col</span><span class="p">:</span> <span class="n">Column</span><span class="p">)</span> <span class="o">-></span> <span class="n">Column</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Converts a column of array of numeric type into a column of pyspark.ml.linalg.DenseVector</span> |
| <span class="sd"> instances</span> |
| |
| <span class="sd"> .. versionadded:: 3.1.0</span> |
| |
| <span class="sd"> .. versionchanged:: 3.5.0</span> |
| <span class="sd"> Supports Spark Connect.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> col : :py:class:`pyspark.sql.Column` or str</span> |
| <span class="sd"> Input column</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :py:class:`pyspark.sql.Column`</span> |
| <span class="sd"> The converted column of dense vectors.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> from pyspark.ml.functions import array_to_vector</span> |
| <span class="sd"> >>> df1 = spark.createDataFrame([([1.5, 2.5],),], schema='v1 array<double>')</span> |
| <span class="sd"> >>> df1.select(array_to_vector('v1').alias('vec1')).collect()</span> |
| <span class="sd"> [Row(vec1=DenseVector([1.5, 2.5]))]</span> |
| <span class="sd"> >>> df2 = spark.createDataFrame([([1.5, 3.5],),], schema='v1 array<float>')</span> |
| <span class="sd"> >>> df2.select(array_to_vector('v1').alias('vec1')).collect()</span> |
| <span class="sd"> [Row(vec1=DenseVector([1.5, 3.5]))]</span> |
| <span class="sd"> >>> df3 = spark.createDataFrame([([1, 3],),], schema='v1 array<int>')</span> |
| <span class="sd"> >>> df3.select(array_to_vector('v1').alias('vec1')).collect()</span> |
| <span class="sd"> [Row(vec1=DenseVector([1.0, 3.0]))]</span> |
| <span class="sd"> """</span> |
| <span class="kn">from</span> <span class="nn">pyspark.core.context</span> <span class="kn">import</span> <span class="n">SparkContext</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.classic.column</span> <span class="kn">import</span> <span class="n">Column</span><span class="p">,</span> <span class="n">_to_java_column</span> |
| |
| <span class="n">sc</span> <span class="o">=</span> <span class="n">SparkContext</span><span class="o">.</span><span class="n">_active_spark_context</span> |
| <span class="k">assert</span> <span class="n">sc</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="k">return</span> <span class="n">Column</span><span class="p">(</span><span class="n">sc</span><span class="o">.</span><span class="n">_jvm</span><span class="o">.</span><span class="n">org</span><span class="o">.</span><span class="n">apache</span><span class="o">.</span><span class="n">spark</span><span class="o">.</span><span class="n">ml</span><span class="o">.</span><span class="n">functions</span><span class="o">.</span><span class="n">array_to_vector</span><span class="p">(</span><span class="n">_to_java_column</span><span class="p">(</span><span class="n">col</span><span class="p">)))</span></div> |
| |
| |
| <span class="k">def</span> <span class="nf">_batched</span><span class="p">(</span> |
| <span class="n">data</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">[</span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">]],</span> <span class="n">batch_size</span><span class="p">:</span> <span class="nb">int</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">Iterator</span><span class="p">[</span><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">]:</span> |
| <span class="w"> </span><span class="sd">"""Generator that splits a pandas dataframe/series into batches."""</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">):</span> |
| <span class="n">df</span> <span class="o">=</span> <span class="n">data</span> |
| <span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">):</span> |
| <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">((</span><span class="n">data</span><span class="p">,),</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> <span class="c1"># isinstance(data, Tuple[pd.Series]):</span> |
| <span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">concat</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span> |
| |
| <span class="n">index</span> <span class="o">=</span> <span class="mi">0</span> |
| <span class="n">data_size</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">df</span><span class="p">)</span> |
| <span class="k">while</span> <span class="n">index</span> <span class="o"><</span> <span class="n">data_size</span><span class="p">:</span> |
| <span class="k">yield</span> <span class="n">df</span><span class="o">.</span><span class="n">iloc</span><span class="p">[</span><span class="n">index</span> <span class="p">:</span> <span class="n">index</span> <span class="o">+</span> <span class="n">batch_size</span><span class="p">]</span> |
| <span class="n">index</span> <span class="o">+=</span> <span class="n">batch_size</span> |
| |
| |
| <span class="k">def</span> <span class="nf">_is_tensor_col</span><span class="p">(</span><span class="n">data</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">])</span> <span class="o">-></span> <span class="nb">bool</span><span class="p">:</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">):</span> |
| <span class="k">return</span> <span class="n">data</span><span class="o">.</span><span class="n">dtype</span> <span class="o">==</span> <span class="n">np</span><span class="o">.</span><span class="n">object_</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">iloc</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">,</span> <span class="nb">list</span><span class="p">))</span> |
| <span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">):</span> |
| <span class="k">return</span> <span class="nb">any</span><span class="p">(</span><span class="n">data</span><span class="o">.</span><span class="n">dtypes</span> <span class="o">==</span> <span class="n">np</span><span class="o">.</span><span class="n">object_</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">any</span><span class="p">(</span> |
| <span class="p">[</span><span class="nb">isinstance</span><span class="p">(</span><span class="n">d</span><span class="p">,</span> <span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">,</span> <span class="nb">list</span><span class="p">))</span> <span class="k">for</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">data</span><span class="o">.</span><span class="n">iloc</span><span class="p">[</span><span class="mi">0</span><span class="p">]]</span> |
| <span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span> |
| <span class="s2">"Unexpected data type: </span><span class="si">{}</span><span class="s2">, expected pd.Series or pd.DataFrame."</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">data</span><span class="p">))</span> |
| <span class="p">)</span> |
| |
| |
| <span class="k">def</span> <span class="nf">_has_tensor_cols</span><span class="p">(</span><span class="n">data</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">[</span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">]])</span> <span class="o">-></span> <span class="nb">bool</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Check if input Series/DataFrame/Tuple contains any tensor-valued columns."""</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">)):</span> |
| <span class="k">return</span> <span class="n">_is_tensor_col</span><span class="p">(</span><span class="n">data</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> <span class="c1"># isinstance(data, Tuple):</span> |
| <span class="k">return</span> <span class="nb">any</span><span class="p">(</span><span class="n">_is_tensor_col</span><span class="p">(</span><span class="n">elem</span><span class="p">)</span> <span class="k">for</span> <span class="n">elem</span> <span class="ow">in</span> <span class="n">data</span><span class="p">)</span> |
| |
| |
| <span class="k">def</span> <span class="nf">_validate_and_transform_multiple_inputs</span><span class="p">(</span> |
| <span class="n">batch</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> <span class="n">input_shapes</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">Optional</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">int</span><span class="p">]]],</span> <span class="n">num_input_cols</span><span class="p">:</span> <span class="nb">int</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">List</span><span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">]:</span> |
| <span class="n">multi_inputs</span> <span class="o">=</span> <span class="p">[</span><span class="n">batch</span><span class="p">[</span><span class="n">col</span><span class="p">]</span><span class="o">.</span><span class="n">to_numpy</span><span class="p">()</span> <span class="k">for</span> <span class="n">col</span> <span class="ow">in</span> <span class="n">batch</span><span class="o">.</span><span class="n">columns</span><span class="p">]</span> |
| <span class="k">if</span> <span class="n">input_shapes</span><span class="p">:</span> |
| <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">input_shapes</span><span class="p">)</span> <span class="o">==</span> <span class="n">num_input_cols</span><span class="p">:</span> |
| <span class="n">multi_inputs</span> <span class="o">=</span> <span class="p">[</span> |
| <span class="n">np</span><span class="o">.</span><span class="n">vstack</span><span class="p">(</span><span class="n">v</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">([</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">input_shapes</span><span class="p">[</span><span class="n">i</span><span class="p">])</span> <span class="c1"># type: ignore</span> |
| <span class="k">if</span> <span class="n">input_shapes</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> |
| <span class="k">else</span> <span class="n">v</span> |
| <span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">v</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">multi_inputs</span><span class="p">)</span> |
| <span class="p">]</span> |
| <span class="k">if</span> <span class="ow">not</span> <span class="nb">all</span><span class="p">([</span><span class="nb">len</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="o">==</span> <span class="nb">len</span><span class="p">(</span><span class="n">batch</span><span class="p">)</span> <span class="k">for</span> <span class="n">x</span> <span class="ow">in</span> <span class="n">multi_inputs</span><span class="p">]):</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Input data does not match expected shape."</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"input_tensor_shapes must match columns"</span><span class="p">)</span> |
| |
| <span class="k">return</span> <span class="n">multi_inputs</span> |
| |
| |
| <span class="k">def</span> <span class="nf">_validate_and_transform_single_input</span><span class="p">(</span> |
| <span class="n">batch</span><span class="p">:</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">,</span> |
| <span class="n">input_shapes</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">|</span> <span class="kc">None</span><span class="p">],</span> |
| <span class="n">has_tensors</span><span class="p">:</span> <span class="nb">bool</span><span class="p">,</span> |
| <span class="n">has_tuple</span><span class="p">:</span> <span class="nb">bool</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">:</span> |
| <span class="c1"># multiple input columns for single expected input</span> |
| <span class="k">if</span> <span class="n">has_tensors</span><span class="p">:</span> |
| <span class="c1"># tensor columns</span> |
| <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">batch</span><span class="o">.</span><span class="n">columns</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span> |
| <span class="c1"># one tensor column and one expected input, vstack rows</span> |
| <span class="n">single_input</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">vstack</span><span class="p">(</span><span class="n">batch</span><span class="o">.</span><span class="n">iloc</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">])</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span> |
| <span class="s2">"Multiple input columns found, but model expected a single "</span> |
| <span class="s2">"input, use `array` to combine columns into tensors."</span> |
| <span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="c1"># scalar columns</span> |
| <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">batch</span><span class="o">.</span><span class="n">columns</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span> |
| <span class="c1"># single scalar column, remove extra dim</span> |
| <span class="n">np_batch</span> <span class="o">=</span> <span class="n">batch</span><span class="o">.</span><span class="n">to_numpy</span><span class="p">()</span> |
| <span class="n">single_input</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">squeeze</span><span class="p">(</span><span class="n">np_batch</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">np_batch</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="o">></span> <span class="mi">1</span> <span class="k">else</span> <span class="n">np_batch</span> |
| <span class="k">if</span> <span class="n">input_shapes</span> <span class="ow">and</span> <span class="n">input_shapes</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="ow">not</span> <span class="ow">in</span> <span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="p">[],</span> <span class="p">[</span><span class="mi">1</span><span class="p">]]:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Invalid input_tensor_shape for scalar column."</span><span class="p">)</span> |
| <span class="k">elif</span> <span class="ow">not</span> <span class="n">has_tuple</span><span class="p">:</span> |
| <span class="c1"># columns grouped via `array`, convert to single tensor</span> |
| <span class="n">single_input</span> <span class="o">=</span> <span class="n">batch</span><span class="o">.</span><span class="n">to_numpy</span><span class="p">()</span> |
| <span class="k">if</span> <span class="n">input_shapes</span> <span class="ow">and</span> <span class="n">input_shapes</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">!=</span> <span class="p">[</span><span class="nb">len</span><span class="p">(</span><span class="n">batch</span><span class="o">.</span><span class="n">columns</span><span class="p">)]:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Input data does not match expected shape."</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span> |
| <span class="s2">"Multiple input columns found, but model expected a single "</span> |
| <span class="s2">"input, use `array` to combine columns into tensors."</span> |
| <span class="p">)</span> |
| |
| <span class="c1"># if input_tensor_shapes provided, try to reshape input</span> |
| <span class="k">if</span> <span class="n">input_shapes</span><span class="p">:</span> |
| <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">input_shapes</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span> |
| <span class="n">single_input</span> <span class="o">=</span> <span class="n">single_input</span><span class="o">.</span><span class="n">reshape</span><span class="p">([</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span> <span class="o">+</span> <span class="n">input_shapes</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span> <span class="c1"># type: ignore</span> |
| <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">single_input</span><span class="p">)</span> <span class="o">!=</span> <span class="nb">len</span><span class="p">(</span><span class="n">batch</span><span class="p">):</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Input data does not match expected shape."</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Multiple input_tensor_shapes found, but model expected one input"</span><span class="p">)</span> |
| |
| <span class="k">return</span> <span class="n">single_input</span> |
| |
| |
| <span class="k">def</span> <span class="nf">_validate_and_transform_prediction_result</span><span class="p">(</span> |
| <span class="n">preds</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span> <span class="o">|</span> <span class="n">Mapping</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">]</span> <span class="o">|</span> <span class="n">List</span><span class="p">[</span><span class="n">Mapping</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]],</span> |
| <span class="n">num_input_rows</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">return_type</span><span class="p">:</span> <span class="n">DataType</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span> <span class="o">|</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Validate numpy-based model predictions against the expected pandas_udf return_type and</span> |
| <span class="sd"> transforms the predictions into an equivalent pandas DataFrame or Series."""</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">return_type</span><span class="p">,</span> <span class="n">StructType</span><span class="p">):</span> |
| <span class="n">struct_rtype</span><span class="p">:</span> <span class="n">StructType</span> <span class="o">=</span> <span class="n">return_type</span> |
| <span class="n">fieldNames</span> <span class="o">=</span> <span class="n">struct_rtype</span><span class="o">.</span><span class="n">names</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">preds</span><span class="p">,</span> <span class="nb">dict</span><span class="p">):</span> |
| <span class="c1"># dictionary of columns</span> |
| <span class="n">predNames</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">preds</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span> |
| <span class="k">for</span> <span class="n">field</span> <span class="ow">in</span> <span class="n">struct_rtype</span><span class="o">.</span><span class="n">fields</span><span class="p">:</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">field</span><span class="o">.</span><span class="n">dataType</span><span class="p">,</span> <span class="n">ArrayType</span><span class="p">):</span> |
| <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">preds</span><span class="p">[</span><span class="n">field</span><span class="o">.</span><span class="n">name</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span><span class="p">:</span> |
| <span class="n">preds</span><span class="p">[</span><span class="n">field</span><span class="o">.</span><span class="n">name</span><span class="p">]</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">preds</span><span class="p">[</span><span class="n">field</span><span class="o">.</span><span class="n">name</span><span class="p">])</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span> |
| <span class="s2">"Prediction results for ArrayType must be two-dimensional."</span> |
| <span class="p">)</span> |
| <span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">field</span><span class="o">.</span><span class="n">dataType</span><span class="p">,</span> <span class="n">supported_scalar_types</span><span class="p">):</span> |
| <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">preds</span><span class="p">[</span><span class="n">field</span><span class="o">.</span><span class="n">name</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">1</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span> |
| <span class="s2">"Prediction results for scalar types must be one-dimensional."</span> |
| <span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Unsupported field type in return struct type."</span><span class="p">)</span> |
| |
| <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">preds</span><span class="p">[</span><span class="n">field</span><span class="o">.</span><span class="n">name</span><span class="p">])</span> <span class="o">!=</span> <span class="n">num_input_rows</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Prediction results must have same length as input data"</span><span class="p">)</span> |
| |
| <span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">preds</span><span class="p">,</span> <span class="nb">list</span><span class="p">)</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">preds</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="nb">dict</span><span class="p">):</span> |
| <span class="c1"># rows of dictionaries</span> |
| <span class="n">predNames</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="n">preds</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">keys</span><span class="p">())</span> |
| <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">preds</span><span class="p">)</span> <span class="o">!=</span> <span class="n">num_input_rows</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Prediction results must have same length as input data."</span><span class="p">)</span> |
| <span class="k">for</span> <span class="n">field</span> <span class="ow">in</span> <span class="n">struct_rtype</span><span class="o">.</span><span class="n">fields</span><span class="p">:</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">field</span><span class="o">.</span><span class="n">dataType</span><span class="p">,</span> <span class="n">ArrayType</span><span class="p">):</span> |
| <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">preds</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">field</span><span class="o">.</span><span class="n">name</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">1</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span> |
| <span class="s2">"Prediction results for ArrayType must be one-dimensional."</span> |
| <span class="p">)</span> |
| <span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">field</span><span class="o">.</span><span class="n">dataType</span><span class="p">,</span> <span class="n">supported_scalar_types</span><span class="p">):</span> |
| <span class="k">if</span> <span class="ow">not</span> <span class="n">np</span><span class="o">.</span><span class="n">isscalar</span><span class="p">(</span><span class="n">preds</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">field</span><span class="o">.</span><span class="n">name</span><span class="p">]):</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Invalid scalar prediction result."</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Unsupported field type in return struct type."</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span> |
| <span class="s2">"Prediction results for StructType must be a dictionary or "</span> |
| <span class="s2">"a list of dictionary, got: </span><span class="si">{}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">preds</span><span class="p">))</span> |
| <span class="p">)</span> |
| |
| <span class="c1"># check column names</span> |
| <span class="k">if</span> <span class="nb">set</span><span class="p">(</span><span class="n">predNames</span><span class="p">)</span> <span class="o">!=</span> <span class="nb">set</span><span class="p">(</span><span class="n">fieldNames</span><span class="p">):</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span> |
| <span class="s2">"Prediction result columns did not match expected return_type "</span> |
| <span class="s2">"columns: expected </span><span class="si">{}</span><span class="s2">, got: </span><span class="si">{}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">fieldNames</span><span class="p">,</span> <span class="n">predNames</span><span class="p">)</span> |
| <span class="p">)</span> |
| |
| <span class="k">return</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">preds</span><span class="p">)</span> |
| <span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">return_type</span><span class="p">,</span> <span class="n">ArrayType</span><span class="p">):</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">preds</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">):</span> |
| <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">preds</span><span class="p">)</span> <span class="o">!=</span> <span class="n">num_input_rows</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Prediction results must have same length as input data."</span><span class="p">)</span> |
| <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">preds</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="o">!=</span> <span class="mi">2</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Prediction results for ArrayType must be two-dimensional."</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Prediction results for ArrayType must be an ndarray."</span><span class="p">)</span> |
| |
| <span class="k">return</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="nb">list</span><span class="p">(</span><span class="n">preds</span><span class="p">))</span> |
| <span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">return_type</span><span class="p">,</span> <span class="n">supported_scalar_types</span><span class="p">):</span> |
| <span class="n">preds_array</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span> <span class="o">=</span> <span class="n">preds</span> <span class="c1"># type: ignore</span> |
| <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">preds_array</span><span class="p">)</span> <span class="o">!=</span> <span class="n">num_input_rows</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Prediction results must have same length as input data."</span><span class="p">)</span> |
| <span class="k">if</span> <span class="ow">not</span> <span class="p">(</span> |
| <span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">preds_array</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="o">==</span> <span class="mi">2</span> <span class="ow">and</span> <span class="n">preds_array</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">==</span> <span class="mi">1</span><span class="p">)</span> |
| <span class="ow">or</span> <span class="nb">len</span><span class="p">(</span><span class="n">preds_array</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span> |
| <span class="p">):</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Invalid shape for scalar prediction result."</span><span class="p">)</span> |
| |
| <span class="n">output</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">squeeze</span><span class="p">(</span><span class="n">preds_array</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">preds_array</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span> <span class="o">></span> <span class="mi">1</span> <span class="k">else</span> <span class="n">preds_array</span> |
| <span class="k">return</span> <span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">(</span><span class="n">output</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="n">output</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Unsupported return type"</span><span class="p">)</span> |
| |
| |
| <div class="viewcode-block" id="predict_batch_udf"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.functions.predict_batch_udf.html#pyspark.ml.functions.predict_batch_udf">[docs]</a><span class="k">def</span> <span class="nf">predict_batch_udf</span><span class="p">(</span> |
| <span class="n">make_predict_fn</span><span class="p">:</span> <span class="n">Callable</span><span class="p">[</span> |
| <span class="p">[],</span> |
| <span class="n">PredictBatchFunction</span><span class="p">,</span> |
| <span class="p">],</span> |
| <span class="o">*</span><span class="p">,</span> |
| <span class="n">return_type</span><span class="p">:</span> <span class="n">DataType</span><span class="p">,</span> |
| <span class="n">batch_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> |
| <span class="n">input_tensor_shapes</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="n">Optional</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">int</span><span class="p">]]],</span> <span class="n">Mapping</span><span class="p">[</span><span class="nb">int</span><span class="p">,</span> <span class="n">List</span><span class="p">[</span><span class="nb">int</span><span class="p">]]]]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="n">UserDefinedFunctionLike</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""Given a function which loads a model and returns a `predict` function for inference over a</span> |
| <span class="sd"> batch of numpy inputs, returns a Pandas UDF wrapper for inference over a Spark DataFrame.</span> |
| |
| <span class="sd"> The returned Pandas UDF does the following on each DataFrame partition:</span> |
| |
| <span class="sd"> * calls the `make_predict_fn` to load the model and cache its `predict` function.</span> |
| <span class="sd"> * batches the input records as numpy arrays and invokes `predict` on each batch.</span> |
| |
| <span class="sd"> Note: this assumes that the `make_predict_fn` encapsulates all of the necessary dependencies for</span> |
| <span class="sd"> running the model, or the Spark executor environment already satisfies all runtime requirements.</span> |
| |
| <span class="sd"> For the conversion of the Spark DataFrame to numpy arrays, there is a one-to-one mapping between</span> |
| <span class="sd"> the input arguments of the `predict` function (returned by the `make_predict_fn`) and the input</span> |
| <span class="sd"> columns sent to the Pandas UDF (returned by the `predict_batch_udf`) at runtime. Each input</span> |
| <span class="sd"> column will be converted as follows:</span> |
| |
| <span class="sd"> * scalar column -> 1-dim np.ndarray</span> |
| <span class="sd"> * tensor column + tensor shape -> N-dim np.ndarray</span> |
| |
| <span class="sd"> Note that any tensor columns in the Spark DataFrame must be represented as a flattened</span> |
| <span class="sd"> one-dimensional array, and multiple scalar columns can be combined into a single tensor column</span> |
| <span class="sd"> using the standard :py:func:`pyspark.sql.functions.array()` function.</span> |
| |
| <span class="sd"> .. versionadded:: 3.4.0</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> make_predict_fn : callable</span> |
| <span class="sd"> Function which is responsible for loading a model and returning a</span> |
| <span class="sd"> :py:class:`PredictBatchFunction` which takes one or more numpy arrays as input and returns</span> |
| <span class="sd"> one of the following:</span> |
| |
| <span class="sd"> * a numpy array (for a single output)</span> |
| <span class="sd"> * a dictionary of named numpy arrays (for multiple outputs)</span> |
| <span class="sd"> * a row-oriented list of dictionaries (for multiple outputs).</span> |
| |
| <span class="sd"> For a dictionary of named numpy arrays, the arrays can only be one or two dimensional, since</span> |
| <span class="sd"> higher dimensional arrays are not supported. For a row-oriented list of dictionaries, each</span> |
| <span class="sd"> element in the dictionary must be either a scalar or one-dimensional array.</span> |
| <span class="sd"> return_type : :py:class:`pyspark.sql.types.DataType` or str.</span> |
| <span class="sd"> Spark SQL datatype for the expected output:</span> |
| |
| <span class="sd"> * Scalar (e.g. IntegerType, FloatType) --> 1-dim numpy array.</span> |
| <span class="sd"> * ArrayType --> 2-dim numpy array.</span> |
| <span class="sd"> * StructType --> dict with keys matching struct fields.</span> |
| <span class="sd"> * StructType --> list of dict with keys matching struct fields, for models like the</span> |
| <span class="sd"> `Huggingface pipeline for sentiment analysis</span> |
| <span class="sd"> <https://huggingface.co/docs/transformers/quicktour#pipeline-usage>`_.</span> |
| |
| <span class="sd"> batch_size : int</span> |
| <span class="sd"> Batch size to use for inference. This is typically a limitation of the model</span> |
| <span class="sd"> and/or available hardware resources and is usually smaller than the Spark partition size.</span> |
| <span class="sd"> input_tensor_shapes : list, dict, optional.</span> |
| <span class="sd"> A list of ints or a dictionary of ints (key) and list of ints (value).</span> |
| <span class="sd"> Input tensor shapes for models with tensor inputs. This can be a list of shapes,</span> |
| <span class="sd"> where each shape is a list of integers or None (for scalar inputs). Alternatively, this</span> |
| <span class="sd"> can be represented by a "sparse" dictionary, where the keys are the integer indices of the</span> |
| <span class="sd"> inputs, and the values are the shapes. Each tensor input value in the Spark DataFrame must</span> |
| <span class="sd"> be represented as a single column containing a flattened 1-D array. The provided</span> |
| <span class="sd"> `input_tensor_shapes` will be used to reshape the flattened array into the expected tensor</span> |
| <span class="sd"> shape. For the list form, the order of the tensor shapes must match the order of the</span> |
| <span class="sd"> selected DataFrame columns. The batch dimension (typically -1 or None in the first</span> |
| <span class="sd"> dimension) should not be included, since it will be determined by the batch_size argument.</span> |
| <span class="sd"> Tabular datasets with scalar-valued columns should not provide this argument.</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> :py:class:`UserDefinedFunctionLike`</span> |
| <span class="sd"> A Pandas UDF for model inference on a Spark DataFrame.</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> For a pre-trained TensorFlow MNIST model with two-dimensional input images represented as a</span> |
| <span class="sd"> flattened tensor value stored in a single Spark DataFrame column of type `array<float>`.</span> |
| |
| <span class="sd"> .. code-block:: python</span> |
| |
| <span class="sd"> from pyspark.ml.functions import predict_batch_udf</span> |
| |
| <span class="sd"> def make_mnist_fn():</span> |
| <span class="sd"> # load/init happens once per python worker</span> |
| <span class="sd"> import tensorflow as tf</span> |
| <span class="sd"> model = tf.keras.models.load_model('/path/to/mnist_model')</span> |
| |
| <span class="sd"> # predict on batches of tasks/partitions, using cached model</span> |
| <span class="sd"> def predict(inputs: np.ndarray) -> np.ndarray:</span> |
| <span class="sd"> # inputs.shape = [batch_size, 784], see input_tensor_shapes</span> |
| <span class="sd"> # outputs.shape = [batch_size, 10], see return_type</span> |
| <span class="sd"> return model.predict(inputs)</span> |
| |
| <span class="sd"> return predict</span> |
| |
| <span class="sd"> mnist_udf = predict_batch_udf(make_mnist_fn,</span> |
| <span class="sd"> return_type=ArrayType(FloatType()),</span> |
| <span class="sd"> batch_size=100,</span> |
| <span class="sd"> input_tensor_shapes=[[784]])</span> |
| |
| <span class="sd"> df = spark.read.parquet("/path/to/mnist_data")</span> |
| <span class="sd"> df.show(5)</span> |
| <span class="sd"> # +--------------------+</span> |
| <span class="sd"> # | data|</span> |
| <span class="sd"> # +--------------------+</span> |
| <span class="sd"> # |[0.0, 0.0, 0.0, 0...|</span> |
| <span class="sd"> # |[0.0, 0.0, 0.0, 0...|</span> |
| <span class="sd"> # |[0.0, 0.0, 0.0, 0...|</span> |
| <span class="sd"> # |[0.0, 0.0, 0.0, 0...|</span> |
| <span class="sd"> # |[0.0, 0.0, 0.0, 0...|</span> |
| <span class="sd"> # +--------------------+</span> |
| |
| <span class="sd"> df.withColumn("preds", mnist_udf("data")).show(5)</span> |
| <span class="sd"> # +--------------------+--------------------+</span> |
| <span class="sd"> # | data| preds|</span> |
| <span class="sd"> # +--------------------+--------------------+</span> |
| <span class="sd"> # |[0.0, 0.0, 0.0, 0...|[-13.511008, 8.84...|</span> |
| <span class="sd"> # |[0.0, 0.0, 0.0, 0...|[-5.3957458, -2.2...|</span> |
| <span class="sd"> # |[0.0, 0.0, 0.0, 0...|[-7.2014456, -8.8...|</span> |
| <span class="sd"> # |[0.0, 0.0, 0.0, 0...|[-19.466187, -13....|</span> |
| <span class="sd"> # |[0.0, 0.0, 0.0, 0...|[-5.7757926, -7.8...|</span> |
| <span class="sd"> # +--------------------+--------------------+</span> |
| |
| <span class="sd"> To demonstrate usage with different combinations of input and output types, the following</span> |
| <span class="sd"> examples just use simple mathematical transforms as the models.</span> |
| |
| <span class="sd"> * Single scalar column</span> |
| <span class="sd"> Input DataFrame has a single scalar column, which will be passed to the `predict`</span> |
| <span class="sd"> function as a 1-D numpy array.</span> |
| |
| <span class="sd"> >>> import numpy as np</span> |
| <span class="sd"> >>> import pandas as pd</span> |
| <span class="sd"> >>> from pyspark.ml.functions import predict_batch_udf</span> |
| <span class="sd"> >>> from pyspark.sql.types import FloatType</span> |
| <span class="sd"> >>></span> |
| <span class="sd"> >>> df = spark.createDataFrame(pd.DataFrame(np.arange(100)))</span> |
| <span class="sd"> >>> df.show(5)</span> |
| <span class="sd"> +---+</span> |
| <span class="sd"> | 0|</span> |
| <span class="sd"> +---+</span> |
| <span class="sd"> | 0|</span> |
| <span class="sd"> | 1|</span> |
| <span class="sd"> | 2|</span> |
| <span class="sd"> | 3|</span> |
| <span class="sd"> | 4|</span> |
| <span class="sd"> +---+</span> |
| <span class="sd"> only showing top 5 rows</span> |
| |
| <span class="sd"> >>> def make_times_two_fn():</span> |
| <span class="sd"> ... def predict(inputs: np.ndarray) -> np.ndarray:</span> |
| <span class="sd"> ... # inputs.shape = [batch_size]</span> |
| <span class="sd"> ... # outputs.shape = [batch_size]</span> |
| <span class="sd"> ... return inputs * 2</span> |
| <span class="sd"> ... return predict</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> >>> times_two_udf = predict_batch_udf(make_times_two_fn,</span> |
| <span class="sd"> ... return_type=FloatType(),</span> |
| <span class="sd"> ... batch_size=10)</span> |
| <span class="sd"> >>> df = spark.createDataFrame(pd.DataFrame(np.arange(100)))</span> |
| <span class="sd"> >>> df.withColumn("x2", times_two_udf("0")).show(5)</span> |
| <span class="sd"> +---+---+</span> |
| <span class="sd"> | 0| x2|</span> |
| <span class="sd"> +---+---+</span> |
| <span class="sd"> | 0|0.0|</span> |
| <span class="sd"> | 1|2.0|</span> |
| <span class="sd"> | 2|4.0|</span> |
| <span class="sd"> | 3|6.0|</span> |
| <span class="sd"> | 4|8.0|</span> |
| <span class="sd"> +---+---+</span> |
| <span class="sd"> only showing top 5 rows</span> |
| |
| <span class="sd"> * Multiple scalar columns</span> |
| <span class="sd"> Input DataFrame has multiple columns of scalar values. If the user-provided `predict`</span> |
| <span class="sd"> function expects a single input, then the user must combine the multiple columns into a</span> |
| <span class="sd"> single tensor using `pyspark.sql.functions.array`.</span> |
| |
| <span class="sd"> >>> import numpy as np</span> |
| <span class="sd"> >>> import pandas as pd</span> |
| <span class="sd"> >>> from pyspark.ml.functions import predict_batch_udf</span> |
| <span class="sd"> >>> from pyspark.sql.functions import array</span> |
| <span class="sd"> >>></span> |
| <span class="sd"> >>> data = np.arange(0, 1000, dtype=np.float64).reshape(-1, 4)</span> |
| <span class="sd"> >>> pdf = pd.DataFrame(data, columns=['a','b','c','d'])</span> |
| <span class="sd"> >>> df = spark.createDataFrame(pdf)</span> |
| <span class="sd"> >>> df.show(5)</span> |
| <span class="sd"> +----+----+----+----+</span> |
| <span class="sd"> | a| b| c| d|</span> |
| <span class="sd"> +----+----+----+----+</span> |
| <span class="sd"> | 0.0| 1.0| 2.0| 3.0|</span> |
| <span class="sd"> | 4.0| 5.0| 6.0| 7.0|</span> |
| <span class="sd"> | 8.0| 9.0|10.0|11.0|</span> |
| <span class="sd"> |12.0|13.0|14.0|15.0|</span> |
| <span class="sd"> |16.0|17.0|18.0|19.0|</span> |
| <span class="sd"> +----+----+----+----+</span> |
| <span class="sd"> only showing top 5 rows</span> |
| |
| <span class="sd"> >>> def make_sum_fn():</span> |
| <span class="sd"> ... def predict(inputs: np.ndarray) -> np.ndarray:</span> |
| <span class="sd"> ... # inputs.shape = [batch_size, 4]</span> |
| <span class="sd"> ... # outputs.shape = [batch_size]</span> |
| <span class="sd"> ... return np.sum(inputs, axis=1)</span> |
| <span class="sd"> ... return predict</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> >>> sum_udf = predict_batch_udf(make_sum_fn,</span> |
| <span class="sd"> ... return_type=FloatType(),</span> |
| <span class="sd"> ... batch_size=10,</span> |
| <span class="sd"> ... input_tensor_shapes=[[4]])</span> |
| <span class="sd"> >>> df.withColumn("sum", sum_udf(array("a", "b", "c", "d"))).show(5)</span> |
| <span class="sd"> +----+----+----+----+----+</span> |
| <span class="sd"> | a| b| c| d| sum|</span> |
| <span class="sd"> +----+----+----+----+----+</span> |
| <span class="sd"> | 0.0| 1.0| 2.0| 3.0| 6.0|</span> |
| <span class="sd"> | 4.0| 5.0| 6.0| 7.0|22.0|</span> |
| <span class="sd"> | 8.0| 9.0|10.0|11.0|38.0|</span> |
| <span class="sd"> |12.0|13.0|14.0|15.0|54.0|</span> |
| <span class="sd"> |16.0|17.0|18.0|19.0|70.0|</span> |
| <span class="sd"> +----+----+----+----+----+</span> |
| <span class="sd"> only showing top 5 rows</span> |
| |
| <span class="sd"> If the `predict` function expects multiple inputs, then the number of selected input columns</span> |
| <span class="sd"> must match the number of expected inputs.</span> |
| |
| <span class="sd"> >>> def make_sum_fn():</span> |
| <span class="sd"> ... def predict(x1: np.ndarray,</span> |
| <span class="sd"> ... x2: np.ndarray,</span> |
| <span class="sd"> ... x3: np.ndarray,</span> |
| <span class="sd"> ... x4: np.ndarray) -> np.ndarray:</span> |
| <span class="sd"> ... # xN.shape = [batch_size]</span> |
| <span class="sd"> ... # outputs.shape = [batch_size]</span> |
| <span class="sd"> ... return x1 + x2 + x3 + x4</span> |
| <span class="sd"> ... return predict</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> >>> sum_udf = predict_batch_udf(make_sum_fn,</span> |
| <span class="sd"> ... return_type=FloatType(),</span> |
| <span class="sd"> ... batch_size=10)</span> |
| <span class="sd"> >>> df.withColumn("sum", sum_udf("a", "b", "c", "d")).show(5)</span> |
| <span class="sd"> +----+----+----+----+----+</span> |
| <span class="sd"> | a| b| c| d| sum|</span> |
| <span class="sd"> +----+----+----+----+----+</span> |
| <span class="sd"> | 0.0| 1.0| 2.0| 3.0| 6.0|</span> |
| <span class="sd"> | 4.0| 5.0| 6.0| 7.0|22.0|</span> |
| <span class="sd"> | 8.0| 9.0|10.0|11.0|38.0|</span> |
| <span class="sd"> |12.0|13.0|14.0|15.0|54.0|</span> |
| <span class="sd"> |16.0|17.0|18.0|19.0|70.0|</span> |
| <span class="sd"> +----+----+----+----+----+</span> |
| <span class="sd"> only showing top 5 rows</span> |
| |
| <span class="sd"> * Multiple tensor columns</span> |
| <span class="sd"> Input DataFrame has multiple columns, where each column is a tensor. The number of columns</span> |
| <span class="sd"> should match the number of expected inputs for the user-provided `predict` function.</span> |
| |
| <span class="sd"> >>> import numpy as np</span> |
| <span class="sd"> >>> import pandas as pd</span> |
| <span class="sd"> >>> from pyspark.ml.functions import predict_batch_udf</span> |
| <span class="sd"> >>> from pyspark.sql.types import ArrayType, FloatType, StructType, StructField</span> |
| <span class="sd"> >>> from typing import Mapping</span> |
| <span class="sd"> >>></span> |
| <span class="sd"> >>> data = np.arange(0, 1000, dtype=np.float64).reshape(-1, 4)</span> |
| <span class="sd"> >>> pdf = pd.DataFrame(data, columns=['a','b','c','d'])</span> |
| <span class="sd"> >>> pdf_tensor = pd.DataFrame()</span> |
| <span class="sd"> >>> pdf_tensor['t1'] = pdf.values.tolist()</span> |
| <span class="sd"> >>> pdf_tensor['t2'] = pdf.drop(columns='d').values.tolist()</span> |
| <span class="sd"> >>> df = spark.createDataFrame(pdf_tensor)</span> |
| <span class="sd"> >>> df.show(5)</span> |
| <span class="sd"> +--------------------+------------------+</span> |
| <span class="sd"> | t1| t2|</span> |
| <span class="sd"> +--------------------+------------------+</span> |
| <span class="sd"> |[0.0, 1.0, 2.0, 3.0]| [0.0, 1.0, 2.0]|</span> |
| <span class="sd"> |[4.0, 5.0, 6.0, 7.0]| [4.0, 5.0, 6.0]|</span> |
| <span class="sd"> |[8.0, 9.0, 10.0, ...| [8.0, 9.0, 10.0]|</span> |
| <span class="sd"> |[12.0, 13.0, 14.0...|[12.0, 13.0, 14.0]|</span> |
| <span class="sd"> |[16.0, 17.0, 18.0...|[16.0, 17.0, 18.0]|</span> |
| <span class="sd"> +--------------------+------------------+</span> |
| <span class="sd"> only showing top 5 rows</span> |
| |
| <span class="sd"> >>> def make_multi_sum_fn():</span> |
| <span class="sd"> ... def predict(x1: np.ndarray, x2: np.ndarray) -> np.ndarray:</span> |
| <span class="sd"> ... # x1.shape = [batch_size, 4]</span> |
| <span class="sd"> ... # x2.shape = [batch_size, 3]</span> |
| <span class="sd"> ... # outputs.shape = [batch_size]</span> |
| <span class="sd"> ... return np.sum(x1, axis=1) + np.sum(x2, axis=1)</span> |
| <span class="sd"> ... return predict</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> >>> multi_sum_udf = predict_batch_udf(</span> |
| <span class="sd"> ... make_multi_sum_fn,</span> |
| <span class="sd"> ... return_type=FloatType(),</span> |
| <span class="sd"> ... batch_size=5,</span> |
| <span class="sd"> ... input_tensor_shapes=[[4], [3]],</span> |
| <span class="sd"> ... )</span> |
| <span class="sd"> >>> df.withColumn("sum", multi_sum_udf("t1", "t2")).show(5)</span> |
| <span class="sd"> +--------------------+------------------+-----+</span> |
| <span class="sd"> | t1| t2| sum|</span> |
| <span class="sd"> +--------------------+------------------+-----+</span> |
| <span class="sd"> |[0.0, 1.0, 2.0, 3.0]| [0.0, 1.0, 2.0]| 9.0|</span> |
| <span class="sd"> |[4.0, 5.0, 6.0, 7.0]| [4.0, 5.0, 6.0]| 37.0|</span> |
| <span class="sd"> |[8.0, 9.0, 10.0, ...| [8.0, 9.0, 10.0]| 65.0|</span> |
| <span class="sd"> |[12.0, 13.0, 14.0...|[12.0, 13.0, 14.0]| 93.0|</span> |
| <span class="sd"> |[16.0, 17.0, 18.0...|[16.0, 17.0, 18.0]|121.0|</span> |
| <span class="sd"> +--------------------+------------------+-----+</span> |
| <span class="sd"> only showing top 5 rows</span> |
| |
| <span class="sd"> * Multiple outputs</span> |
| <span class="sd"> Some models can provide multiple outputs. These can be returned as a dictionary of named</span> |
| <span class="sd"> values, which can be represented in either columnar or row-based formats.</span> |
| |
| <span class="sd"> >>> def make_multi_sum_fn():</span> |
| <span class="sd"> ... def predict_columnar(x1: np.ndarray, x2: np.ndarray) -> Mapping[str, np.ndarray]:</span> |
| <span class="sd"> ... # x1.shape = [batch_size, 4]</span> |
| <span class="sd"> ... # x2.shape = [batch_size, 3]</span> |
| <span class="sd"> ... return {</span> |
| <span class="sd"> ... "sum1": np.sum(x1, axis=1),</span> |
| <span class="sd"> ... "sum2": np.sum(x2, axis=1)</span> |
| <span class="sd"> ... }</span> |
| <span class="sd"> ... return predict_columnar</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> >>> multi_sum_udf = predict_batch_udf(</span> |
| <span class="sd"> ... make_multi_sum_fn,</span> |
| <span class="sd"> ... return_type=StructType([</span> |
| <span class="sd"> ... StructField("sum1", FloatType(), True),</span> |
| <span class="sd"> ... StructField("sum2", FloatType(), True)</span> |
| <span class="sd"> ... ]),</span> |
| <span class="sd"> ... batch_size=5,</span> |
| <span class="sd"> ... input_tensor_shapes=[[4], [3]],</span> |
| <span class="sd"> ... )</span> |
| <span class="sd"> >>> df.withColumn("preds", multi_sum_udf("t1", "t2")).select("t1", "t2", "preds.*").show(5)</span> |
| <span class="sd"> +--------------------+------------------+----+----+</span> |
| <span class="sd"> | t1| t2|sum1|sum2|</span> |
| <span class="sd"> +--------------------+------------------+----+----+</span> |
| <span class="sd"> |[0.0, 1.0, 2.0, 3.0]| [0.0, 1.0, 2.0]| 6.0| 3.0|</span> |
| <span class="sd"> |[4.0, 5.0, 6.0, 7.0]| [4.0, 5.0, 6.0]|22.0|15.0|</span> |
| <span class="sd"> |[8.0, 9.0, 10.0, ...| [8.0, 9.0, 10.0]|38.0|27.0|</span> |
| <span class="sd"> |[12.0, 13.0, 14.0...|[12.0, 13.0, 14.0]|54.0|39.0|</span> |
| <span class="sd"> |[16.0, 17.0, 18.0...|[16.0, 17.0, 18.0]|70.0|51.0|</span> |
| <span class="sd"> +--------------------+------------------+----+----+</span> |
| <span class="sd"> only showing top 5 rows</span> |
| |
| <span class="sd"> >>> def make_multi_sum_fn():</span> |
| <span class="sd"> ... def predict_row(x1: np.ndarray, x2: np.ndarray) -> list[Mapping[str, float]]:</span> |
| <span class="sd"> ... # x1.shape = [batch_size, 4]</span> |
| <span class="sd"> ... # x2.shape = [batch_size, 3]</span> |
| <span class="sd"> ... return [{'sum1': np.sum(x1[i]), 'sum2': np.sum(x2[i])} for i in range(len(x1))]</span> |
| <span class="sd"> ... return predict_row</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> >>> multi_sum_udf = predict_batch_udf(</span> |
| <span class="sd"> ... make_multi_sum_fn,</span> |
| <span class="sd"> ... return_type=StructType([</span> |
| <span class="sd"> ... StructField("sum1", FloatType(), True),</span> |
| <span class="sd"> ... StructField("sum2", FloatType(), True)</span> |
| <span class="sd"> ... ]),</span> |
| <span class="sd"> ... batch_size=5,</span> |
| <span class="sd"> ... input_tensor_shapes=[[4], [3]],</span> |
| <span class="sd"> ... )</span> |
| <span class="sd"> >>> df.withColumn("sum", multi_sum_udf("t1", "t2")).select("t1", "t2", "sum.*").show(5)</span> |
| <span class="sd"> +--------------------+------------------+----+----+</span> |
| <span class="sd"> | t1| t2|sum1|sum2|</span> |
| <span class="sd"> +--------------------+------------------+----+----+</span> |
| <span class="sd"> |[0.0, 1.0, 2.0, 3.0]| [0.0, 1.0, 2.0]| 6.0| 3.0|</span> |
| <span class="sd"> |[4.0, 5.0, 6.0, 7.0]| [4.0, 5.0, 6.0]|22.0|15.0|</span> |
| <span class="sd"> |[8.0, 9.0, 10.0, ...| [8.0, 9.0, 10.0]|38.0|27.0|</span> |
| <span class="sd"> |[12.0, 13.0, 14.0...|[12.0, 13.0, 14.0]|54.0|39.0|</span> |
| <span class="sd"> |[16.0, 17.0, 18.0...|[16.0, 17.0, 18.0]|70.0|51.0|</span> |
| <span class="sd"> +--------------------+------------------+----+----+</span> |
| <span class="sd"> only showing top 5 rows</span> |
| |
| <span class="sd"> Note that the multiple outputs can be arrays as well.</span> |
| |
| <span class="sd"> >>> def make_multi_times_two_fn():</span> |
| <span class="sd"> ... def predict(x1: np.ndarray, x2: np.ndarray) -> Mapping[str, np.ndarray]:</span> |
| <span class="sd"> ... # x1.shape = [batch_size, 4]</span> |
| <span class="sd"> ... # x2.shape = [batch_size, 3]</span> |
| <span class="sd"> ... return {"t1x2": x1 * 2, "t2x2": x2 * 2}</span> |
| <span class="sd"> ... return predict</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> >>> multi_times_two_udf = predict_batch_udf(</span> |
| <span class="sd"> ... make_multi_times_two_fn,</span> |
| <span class="sd"> ... return_type=StructType([</span> |
| <span class="sd"> ... StructField("t1x2", ArrayType(FloatType()), True),</span> |
| <span class="sd"> ... StructField("t2x2", ArrayType(FloatType()), True)</span> |
| <span class="sd"> ... ]),</span> |
| <span class="sd"> ... batch_size=5,</span> |
| <span class="sd"> ... input_tensor_shapes=[[4], [3]],</span> |
| <span class="sd"> ... )</span> |
| <span class="sd"> >>> df.withColumn("x2", multi_times_two_udf("t1", "t2")).select("t1", "t2", "x2.*").show(5)</span> |
| <span class="sd"> +--------------------+------------------+--------------------+------------------+</span> |
| <span class="sd"> | t1| t2| t1x2| t2x2|</span> |
| <span class="sd"> +--------------------+------------------+--------------------+------------------+</span> |
| <span class="sd"> |[0.0, 1.0, 2.0, 3.0]| [0.0, 1.0, 2.0]|[0.0, 2.0, 4.0, 6.0]| [0.0, 2.0, 4.0]|</span> |
| <span class="sd"> |[4.0, 5.0, 6.0, 7.0]| [4.0, 5.0, 6.0]|[8.0, 10.0, 12.0,...| [8.0, 10.0, 12.0]|</span> |
| <span class="sd"> |[8.0, 9.0, 10.0, ...| [8.0, 9.0, 10.0]|[16.0, 18.0, 20.0...|[16.0, 18.0, 20.0]|</span> |
| <span class="sd"> |[12.0, 13.0, 14.0...|[12.0, 13.0, 14.0]|[24.0, 26.0, 28.0...|[24.0, 26.0, 28.0]|</span> |
| <span class="sd"> |[16.0, 17.0, 18.0...|[16.0, 17.0, 18.0]|[32.0, 34.0, 36.0...|[32.0, 34.0, 36.0]|</span> |
| <span class="sd"> +--------------------+------------------+--------------------+------------------+</span> |
| <span class="sd"> only showing top 5 rows</span> |
| <span class="sd"> """</span> |
| <span class="c1"># generate a new uuid each time this is invoked on the driver to invalidate executor-side cache.</span> |
| <span class="n">model_uuid</span> <span class="o">=</span> <span class="n">uuid</span><span class="o">.</span><span class="n">uuid4</span><span class="p">()</span> |
| |
| <span class="k">def</span> <span class="nf">predict</span><span class="p">(</span><span class="n">data</span><span class="p">:</span> <span class="n">Iterator</span><span class="p">[</span><span class="n">Union</span><span class="p">[</span><span class="n">pd</span><span class="o">.</span><span class="n">Series</span><span class="p">,</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">]])</span> <span class="o">-></span> <span class="n">Iterator</span><span class="p">[</span><span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">]:</span> |
| <span class="c1"># TODO: adjust return type hint when Iterator[Union[pd.Series, pd.DataFrame]] is supported</span> |
| <span class="kn">from</span> <span class="nn">pyspark.ml.model_cache</span> <span class="kn">import</span> <span class="n">ModelCache</span> |
| |
| <span class="c1"># get predict function (from cache or from running user-provided make_predict_fn)</span> |
| <span class="n">predict_fn</span> <span class="o">=</span> <span class="n">ModelCache</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">model_uuid</span><span class="p">)</span> |
| <span class="k">if</span> <span class="ow">not</span> <span class="n">predict_fn</span><span class="p">:</span> |
| <span class="n">predict_fn</span> <span class="o">=</span> <span class="n">make_predict_fn</span><span class="p">()</span> |
| <span class="n">ModelCache</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">model_uuid</span><span class="p">,</span> <span class="n">predict_fn</span><span class="p">)</span> |
| |
| <span class="c1"># get number of expected parameters for predict function</span> |
| <span class="n">signature</span> <span class="o">=</span> <span class="n">inspect</span><span class="o">.</span><span class="n">signature</span><span class="p">(</span><span class="n">predict_fn</span><span class="p">)</span> |
| <span class="n">num_expected_cols</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">signature</span><span class="o">.</span><span class="n">parameters</span><span class="p">)</span> |
| |
| <span class="c1"># convert sparse input_tensor_shapes to dense if needed</span> |
| <span class="n">input_shapes</span><span class="p">:</span> <span class="n">List</span><span class="p">[</span><span class="n">List</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">|</span> <span class="kc">None</span><span class="p">]</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">input_tensor_shapes</span><span class="p">,</span> <span class="n">Mapping</span><span class="p">):</span> |
| <span class="n">input_shapes</span> <span class="o">=</span> <span class="p">[</span><span class="kc">None</span><span class="p">]</span> <span class="o">*</span> <span class="n">num_expected_cols</span> |
| <span class="k">for</span> <span class="n">index</span><span class="p">,</span> <span class="n">shape</span> <span class="ow">in</span> <span class="n">input_tensor_shapes</span><span class="o">.</span><span class="n">items</span><span class="p">():</span> |
| <span class="n">input_shapes</span><span class="p">[</span><span class="n">index</span><span class="p">]</span> <span class="o">=</span> <span class="n">shape</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="n">input_shapes</span> <span class="o">=</span> <span class="n">input_tensor_shapes</span> <span class="c1"># type: ignore</span> |
| |
| <span class="c1"># iterate over pandas batch, invoking predict_fn with ndarrays</span> |
| <span class="k">for</span> <span class="n">pandas_batch</span> <span class="ow">in</span> <span class="n">data</span><span class="p">:</span> |
| <span class="n">has_tuple</span> <span class="o">=</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">pandas_batch</span><span class="p">,</span> <span class="n">Tuple</span><span class="p">)</span> <span class="c1"># type: ignore</span> |
| <span class="n">has_tensors</span> <span class="o">=</span> <span class="n">_has_tensor_cols</span><span class="p">(</span><span class="n">pandas_batch</span><span class="p">)</span> |
| |
| <span class="c1"># require input_tensor_shapes for any tensor columns</span> |
| <span class="k">if</span> <span class="n">has_tensors</span> <span class="ow">and</span> <span class="ow">not</span> <span class="n">input_shapes</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Tensor columns require input_tensor_shapes"</span><span class="p">)</span> |
| |
| <span class="k">for</span> <span class="n">batch</span> <span class="ow">in</span> <span class="n">_batched</span><span class="p">(</span><span class="n">pandas_batch</span><span class="p">,</span> <span class="n">batch_size</span><span class="p">):</span> |
| <span class="n">num_input_rows</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">batch</span><span class="p">)</span> |
| <span class="n">num_input_cols</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">batch</span><span class="o">.</span><span class="n">columns</span><span class="p">)</span> |
| <span class="k">if</span> <span class="n">num_input_cols</span> <span class="o">==</span> <span class="n">num_expected_cols</span> <span class="ow">and</span> <span class="n">num_expected_cols</span> <span class="o">></span> <span class="mi">1</span><span class="p">:</span> |
| <span class="c1"># input column per expected input for multiple inputs</span> |
| <span class="n">multi_inputs</span> <span class="o">=</span> <span class="n">_validate_and_transform_multiple_inputs</span><span class="p">(</span> |
| <span class="n">batch</span><span class="p">,</span> <span class="n">input_shapes</span><span class="p">,</span> <span class="n">num_input_cols</span> |
| <span class="p">)</span> |
| <span class="c1"># run model prediction function on multiple (numpy) inputs</span> |
| <span class="n">preds</span> <span class="o">=</span> <span class="n">predict_fn</span><span class="p">(</span><span class="o">*</span><span class="n">multi_inputs</span><span class="p">)</span> |
| <span class="k">elif</span> <span class="n">num_expected_cols</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span> |
| <span class="c1"># one or more input columns for single expected input</span> |
| <span class="n">single_input</span> <span class="o">=</span> <span class="n">_validate_and_transform_single_input</span><span class="p">(</span> |
| <span class="n">batch</span><span class="p">,</span> <span class="n">input_shapes</span><span class="p">,</span> <span class="n">has_tensors</span><span class="p">,</span> <span class="n">has_tuple</span> |
| <span class="p">)</span> |
| <span class="c1"># run model prediction function on single (numpy) inputs</span> |
| <span class="n">preds</span> <span class="o">=</span> <span class="n">predict_fn</span><span class="p">(</span><span class="n">single_input</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="n">msg</span> <span class="o">=</span> <span class="s2">"Model expected </span><span class="si">{}</span><span class="s2"> inputs, but received </span><span class="si">{}</span><span class="s2"> columns"</span> |
| <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="n">msg</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">num_expected_cols</span><span class="p">,</span> <span class="n">num_input_cols</span><span class="p">))</span> |
| |
| <span class="c1"># return transformed predictions to Spark</span> |
| <span class="k">yield</span> <span class="n">_validate_and_transform_prediction_result</span><span class="p">(</span> |
| <span class="n">preds</span><span class="p">,</span> <span class="n">num_input_rows</span><span class="p">,</span> <span class="n">return_type</span> |
| <span class="p">)</span> <span class="c1"># type: ignore</span> |
| |
| <span class="k">return</span> <span class="n">pandas_udf</span><span class="p">(</span><span class="n">predict</span><span class="p">,</span> <span class="n">return_type</span><span class="p">)</span> <span class="c1"># type: ignore[call-overload]</span></div> |
| |
| |
| <span class="k">def</span> <span class="nf">_test</span><span class="p">()</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="kn">import</span> <span class="nn">doctest</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SparkSession</span> |
| <span class="kn">import</span> <span class="nn">pyspark.ml.functions</span> |
| <span class="kn">import</span> <span class="nn">sys</span> |
| |
| <span class="kn">from</span> <span class="nn">pyspark.sql.pandas.utils</span> <span class="kn">import</span> <span class="p">(</span> |
| <span class="n">require_minimum_pandas_version</span><span class="p">,</span> |
| <span class="n">require_minimum_pyarrow_version</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="k">try</span><span class="p">:</span> |
| <span class="n">require_minimum_pandas_version</span><span class="p">()</span> |
| <span class="n">require_minimum_pyarrow_version</span><span class="p">()</span> |
| <span class="k">except</span> <span class="ne">Exception</span> <span class="k">as</span> <span class="n">e</span><span class="p">:</span> |
| <span class="nb">print</span><span class="p">(</span> |
| <span class="sa">f</span><span class="s2">"Skipping pyspark.ml.functions doctests: </span><span class="si">{</span><span class="n">e</span><span class="si">}</span><span class="s2">"</span><span class="p">,</span> |
| <span class="n">file</span><span class="o">=</span><span class="n">sys</span><span class="o">.</span><span class="n">stderr</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> |
| |
| <span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">ml</span><span class="o">.</span><span class="n">functions</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span> |
| <span class="n">spark</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">master</span><span class="p">(</span><span class="s2">"local[2]"</span><span class="p">)</span><span class="o">.</span><span class="n">appName</span><span class="p">(</span><span class="s2">"ml.functions tests"</span><span class="p">)</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span> |
| <span class="n">sc</span> <span class="o">=</span> <span class="n">spark</span><span class="o">.</span><span class="n">sparkContext</span> |
| <span class="n">globs</span><span class="p">[</span><span class="s2">"sc"</span><span class="p">]</span> <span class="o">=</span> <span class="n">sc</span> |
| <span class="n">globs</span><span class="p">[</span><span class="s2">"spark"</span><span class="p">]</span> <span class="o">=</span> <span class="n">spark</span> |
| |
| <span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span> |
| <span class="n">pyspark</span><span class="o">.</span><span class="n">ml</span><span class="o">.</span><span class="n">functions</span><span class="p">,</span> |
| <span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span> |
| <span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span> <span class="o">|</span> <span class="n">doctest</span><span class="o">.</span><span class="n">NORMALIZE_WHITESPACE</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span> |
| <span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span> |
| <span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> |
| |
| |
| <span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">"__main__"</span><span class="p">:</span> |
| <span class="n">_test</span><span class="p">()</span> |
| </pre></div> |
| |
| </article> |
| |
| |
| |
| <footer class="bd-footer-article"> |
| |
| <div class="footer-article-items footer-article__inner"> |
| |
| <div class="footer-article-item"><!-- Previous / next buttons --> |
| <div class="prev-next-area"> |
| </div></div> |
| |
| </div> |
| |
| </footer> |
| |
| </div> |
| |
| |
| |
| |
| </div> |
| <footer class="bd-footer-content"> |
| |
| </footer> |
| |
| </main> |
| </div> |
| </div> |
| |
| <!-- Scripts loaded after <body> so the DOM is not blocked --> |
| <script src="../../../_static/scripts/bootstrap.js?digest=e353d410970836974a52"></script> |
| <script src="../../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52"></script> |
| |
| <footer class="bd-footer"> |
| <div class="bd-footer__inner bd-page-width"> |
| |
| <div class="footer-items__start"> |
| |
| <div class="footer-item"><p class="copyright"> |
| Copyright @ 2024 The Apache Software Foundation, Licensed under the <a href="https://www.apache.org/licenses/LICENSE-2.0">Apache License, Version 2.0</a>. |
| </p></div> |
| |
| <div class="footer-item"> |
| <p class="sphinx-version"> |
| Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 4.5.0. |
| <br/> |
| </p> |
| </div> |
| |
| </div> |
| |
| |
| <div class="footer-items__end"> |
| |
| <div class="footer-item"><p class="theme-version"> |
| Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.13.3. |
| </p></div> |
| |
| </div> |
| |
| </div> |
| |
| </footer> |
| </body> |
| </html> |