| |
| |
| <!DOCTYPE html> |
| |
| |
| <html > |
| |
| <head> |
| <meta charset="utf-8" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1.0" /> |
| <title>pyspark.ml.evaluation — PySpark 4.0.0-preview1 documentation</title> |
| |
| |
| |
| <script data-cfasync="false"> |
| document.documentElement.dataset.mode = localStorage.getItem("mode") || ""; |
| document.documentElement.dataset.theme = localStorage.getItem("theme") || "light"; |
| </script> |
| |
| <!-- Loaded before other Sphinx assets --> |
| <link href="../../../_static/styles/theme.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link href="../../../_static/styles/bootstrap.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link href="../../../_static/styles/pydata-sphinx-theme.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| |
| |
| <link href="../../../_static/vendor/fontawesome/6.1.2/css/all.min.css?digest=e353d410970836974a52" rel="stylesheet" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2" /> |
| <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2" /> |
| |
| <link rel="stylesheet" type="text/css" href="../../../_static/pygments.css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/copybutton.css" /> |
| <link rel="stylesheet" type="text/css" href="../../../_static/css/pyspark.css" /> |
| |
| <!-- Pre-loaded scripts that we'll load fully later --> |
| <link rel="preload" as="script" href="../../../_static/scripts/bootstrap.js?digest=e353d410970836974a52" /> |
| <link rel="preload" as="script" href="../../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52" /> |
| |
| <script data-url_root="../../../" id="documentation_options" src="../../../_static/documentation_options.js"></script> |
| <script src="../../../_static/jquery.js"></script> |
| <script src="../../../_static/underscore.js"></script> |
| <script src="../../../_static/doctools.js"></script> |
| <script src="../../../_static/clipboard.min.js"></script> |
| <script src="../../../_static/copybutton.js"></script> |
| <script crossorigin="anonymous" integrity="sha256-Ae2Vz/4ePdIu6ZyI/5ZGsYnb+m0JlOmKPjt6XZ9JJkA=" src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.4/require.min.js"></script> |
| <script>DOCUMENTATION_OPTIONS.pagename = '_modules/pyspark/ml/evaluation';</script> |
| <link rel="canonical" href="https://spark.apache.org/docs/latest/api/python/_modules/pyspark/ml/evaluation.html" /> |
| <link rel="search" title="Search" href="../../../search.html" /> |
| <meta name="viewport" content="width=device-width, initial-scale=1" /> |
| <meta name="docsearch:language" content="None"> |
| |
| |
| <!-- Matomo --> |
| <script type="text/javascript"> |
| var _paq = window._paq = window._paq || []; |
| /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ |
| _paq.push(["disableCookies"]); |
| _paq.push(['trackPageView']); |
| _paq.push(['enableLinkTracking']); |
| (function() { |
| var u="https://analytics.apache.org/"; |
| _paq.push(['setTrackerUrl', u+'matomo.php']); |
| _paq.push(['setSiteId', '40']); |
| var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; |
| g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); |
| })(); |
| </script> |
| <!-- End Matomo Code --> |
| |
| </head> |
| |
| |
| <body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode=""> |
| |
| |
| |
| <a class="skip-link" href="#main-content">Skip to main content</a> |
| |
| <input type="checkbox" |
| class="sidebar-toggle" |
| name="__primary" |
| id="__primary"/> |
| <label class="overlay overlay-primary" for="__primary"></label> |
| |
| <input type="checkbox" |
| class="sidebar-toggle" |
| name="__secondary" |
| id="__secondary"/> |
| <label class="overlay overlay-secondary" for="__secondary"></label> |
| |
| <div class="search-button__wrapper"> |
| <div class="search-button__overlay"></div> |
| <div class="search-button__search-container"> |
| <form class="bd-search d-flex align-items-center" |
| action="../../../search.html" |
| method="get"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| <input type="search" |
| class="form-control" |
| name="q" |
| id="search-input" |
| placeholder="Search the docs ..." |
| aria-label="Search the docs ..." |
| autocomplete="off" |
| autocorrect="off" |
| autocapitalize="off" |
| spellcheck="false"/> |
| <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span> |
| </form></div> |
| </div> |
| |
| <nav class="bd-header navbar navbar-expand-lg bd-navbar"> |
| <div class="bd-header__inner bd-page-width"> |
| <label class="sidebar-toggle primary-toggle" for="__primary"> |
| <span class="fa-solid fa-bars"></span> |
| </label> |
| |
| <div class="navbar-header-items__start"> |
| |
| <div class="navbar-item"> |
| |
| |
| <a class="navbar-brand logo" href="../../../index.html"> |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| <img src="../../../_static/spark-logo-light.png" class="logo__image only-light" alt="Logo image"/> |
| <script>document.write(`<img src="../../../_static/spark-logo-dark.png" class="logo__image only-dark" alt="Logo image"/>`);</script> |
| |
| |
| </a></div> |
| |
| </div> |
| |
| |
| <div class="col-lg-9 navbar-header-items"> |
| |
| <div class="me-auto navbar-header-items__center"> |
| |
| <div class="navbar-item"><nav class="navbar-nav"> |
| <p class="sidebar-header-items__title" |
| role="heading" |
| aria-level="1" |
| aria-label="Site Navigation"> |
| Site Navigation |
| </p> |
| <ul class="bd-navbar-elements navbar-nav"> |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../index.html"> |
| Overview |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../getting_started/index.html"> |
| Getting Started |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../user_guide/index.html"> |
| User Guides |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../reference/index.html"> |
| API Reference |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../development/index.html"> |
| Development |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../migration_guide/index.html"> |
| Migration Guides |
| </a> |
| </li> |
| |
| </ul> |
| </nav></div> |
| |
| </div> |
| |
| |
| <div class="navbar-header-items__end"> |
| |
| <div class="navbar-item navbar-persistent--container"> |
| |
| <script> |
| document.write(` |
| <button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| </button> |
| `); |
| </script> |
| </div> |
| |
| |
| <div class="navbar-item"><!-- |
| Licensed to the Apache Software Foundation (ASF) under one or more |
| contributor license agreements. See the NOTICE file distributed with |
| this work for additional information regarding copyright ownership. |
| The ASF licenses this file to You under the Apache License, Version 2.0 |
| (the "License"); you may not use this file except in compliance with |
| the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| --> |
| |
| <div id="version-button" class="dropdown"> |
| <button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown"> |
| 4.0.0-preview1 |
| <span class="caret"></span> |
| </button> |
| <div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button"> |
| <!-- dropdown will be populated by javascript on page load --> |
| </div> |
| </div> |
| |
| <script type="text/javascript"> |
| // Function to construct the target URL from the JSON components |
| function buildURL(entry) { |
| var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja |
| template = template.replace("{version}", entry.version); |
| return template; |
| } |
| |
| // Function to check if corresponding page path exists in other version of docs |
| // and, if so, go there instead of the homepage of the other docs version |
| function checkPageExistsAndRedirect(event) { |
| const currentFilePath = "_modules/pyspark/ml/evaluation.html", |
| otherDocsHomepage = event.target.getAttribute("href"); |
| let tryUrl = `${otherDocsHomepage}${currentFilePath}`; |
| $.ajax({ |
| type: 'HEAD', |
| url: tryUrl, |
| // if the page exists, go there |
| success: function() { |
| location.href = tryUrl; |
| } |
| }).fail(function() { |
| location.href = otherDocsHomepage; |
| }); |
| return false; |
| } |
| |
| // Function to populate the version switcher |
| (function () { |
| // get JSON config |
| $.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) { |
| // create the nodes first (before AJAX calls) to ensure the order is |
| // correct (for now, links will go to doc version homepage) |
| $.each(data, function(index, entry) { |
| // if no custom name specified (e.g., "latest"), use version string |
| if (!("name" in entry)) { |
| entry.name = entry.version; |
| } |
| // construct the appropriate URL, and add it to the dropdown |
| entry.url = buildURL(entry); |
| const node = document.createElement("a"); |
| node.setAttribute("class", "list-group-item list-group-item-action py-1"); |
| node.setAttribute("href", `${entry.url}`); |
| node.textContent = `${entry.name}`; |
| node.onclick = checkPageExistsAndRedirect; |
| $("#version_switcher").append(node); |
| }); |
| }); |
| })(); |
| </script></div> |
| |
| <div class="navbar-item"> |
| <script> |
| document.write(` |
| <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span> |
| <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span> |
| <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span> |
| </button> |
| `); |
| </script></div> |
| |
| <div class="navbar-item"><ul class="navbar-icon-links navbar-nav" |
| aria-label="Icon Links"> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span> |
| <label class="sr-only">GitHub</label></a> |
| </li> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span> |
| <label class="sr-only">PyPI</label></a> |
| </li> |
| </ul></div> |
| |
| </div> |
| |
| </div> |
| |
| |
| <div class="navbar-persistent--mobile"> |
| <script> |
| document.write(` |
| <button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <i class="fa-solid fa-magnifying-glass"></i> |
| </button> |
| `); |
| </script> |
| </div> |
| |
| |
| |
| </div> |
| |
| </nav> |
| |
| <div class="bd-container"> |
| <div class="bd-container__inner bd-page-width"> |
| |
| <div class="bd-sidebar-primary bd-sidebar hide-on-wide"> |
| |
| |
| |
| <div class="sidebar-header-items sidebar-primary__section"> |
| |
| |
| <div class="sidebar-header-items__center"> |
| |
| <div class="navbar-item"><nav class="navbar-nav"> |
| <p class="sidebar-header-items__title" |
| role="heading" |
| aria-level="1" |
| aria-label="Site Navigation"> |
| Site Navigation |
| </p> |
| <ul class="bd-navbar-elements navbar-nav"> |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../index.html"> |
| Overview |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../getting_started/index.html"> |
| Getting Started |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../user_guide/index.html"> |
| User Guides |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../reference/index.html"> |
| API Reference |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../development/index.html"> |
| Development |
| </a> |
| </li> |
| |
| |
| <li class="nav-item"> |
| <a class="nav-link nav-internal" href="../../../migration_guide/index.html"> |
| Migration Guides |
| </a> |
| </li> |
| |
| </ul> |
| </nav></div> |
| |
| </div> |
| |
| |
| |
| <div class="sidebar-header-items__end"> |
| |
| <div class="navbar-item"><!-- |
| Licensed to the Apache Software Foundation (ASF) under one or more |
| contributor license agreements. See the NOTICE file distributed with |
| this work for additional information regarding copyright ownership. |
| The ASF licenses this file to You under the Apache License, Version 2.0 |
| (the "License"); you may not use this file except in compliance with |
| the License. You may obtain a copy of the License at |
| |
| http://www.apache.org/licenses/LICENSE-2.0 |
| |
| Unless required by applicable law or agreed to in writing, software |
| distributed under the License is distributed on an "AS IS" BASIS, |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| See the License for the specific language governing permissions and |
| limitations under the License. |
| --> |
| |
| <div id="version-button" class="dropdown"> |
| <button type="button" class="btn btn-secondary btn-sm navbar-btn dropdown-toggle" id="version_switcher_button" data-toggle="dropdown"> |
| 4.0.0-preview1 |
| <span class="caret"></span> |
| </button> |
| <div id="version_switcher" class="dropdown-menu list-group-flush py-0" aria-labelledby="version_switcher_button"> |
| <!-- dropdown will be populated by javascript on page load --> |
| </div> |
| </div> |
| |
| <script type="text/javascript"> |
| // Function to construct the target URL from the JSON components |
| function buildURL(entry) { |
| var template = "https://spark.apache.org/docs/{version}/api/python/index.html"; // supplied by jinja |
| template = template.replace("{version}", entry.version); |
| return template; |
| } |
| |
| // Function to check if corresponding page path exists in other version of docs |
| // and, if so, go there instead of the homepage of the other docs version |
| function checkPageExistsAndRedirect(event) { |
| const currentFilePath = "_modules/pyspark/ml/evaluation.html", |
| otherDocsHomepage = event.target.getAttribute("href"); |
| let tryUrl = `${otherDocsHomepage}${currentFilePath}`; |
| $.ajax({ |
| type: 'HEAD', |
| url: tryUrl, |
| // if the page exists, go there |
| success: function() { |
| location.href = tryUrl; |
| } |
| }).fail(function() { |
| location.href = otherDocsHomepage; |
| }); |
| return false; |
| } |
| |
| // Function to populate the version switcher |
| (function () { |
| // get JSON config |
| $.getJSON("https://spark.apache.org/static/versions.json", function(data, textStatus, jqXHR) { |
| // create the nodes first (before AJAX calls) to ensure the order is |
| // correct (for now, links will go to doc version homepage) |
| $.each(data, function(index, entry) { |
| // if no custom name specified (e.g., "latest"), use version string |
| if (!("name" in entry)) { |
| entry.name = entry.version; |
| } |
| // construct the appropriate URL, and add it to the dropdown |
| entry.url = buildURL(entry); |
| const node = document.createElement("a"); |
| node.setAttribute("class", "list-group-item list-group-item-action py-1"); |
| node.setAttribute("href", `${entry.url}`); |
| node.textContent = `${entry.name}`; |
| node.onclick = checkPageExistsAndRedirect; |
| $("#version_switcher").append(node); |
| }); |
| }); |
| })(); |
| </script></div> |
| |
| <div class="navbar-item"> |
| <script> |
| document.write(` |
| <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-bs-placement="bottom" data-bs-toggle="tooltip"> |
| <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span> |
| <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span> |
| <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span> |
| </button> |
| `); |
| </script></div> |
| |
| <div class="navbar-item"><ul class="navbar-icon-links navbar-nav" |
| aria-label="Icon Links"> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://github.com/apache/spark" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-brands fa-github"></i></span> |
| <label class="sr-only">GitHub</label></a> |
| </li> |
| <li class="nav-item"> |
| |
| |
| |
| |
| |
| |
| |
| |
| <a href="https://pypi.org/project/pyspark" title="PyPI" class="nav-link" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><span><i class="fa-solid fa-box"></i></span> |
| <label class="sr-only">PyPI</label></a> |
| </li> |
| </ul></div> |
| |
| </div> |
| |
| </div> |
| |
| |
| <div class="sidebar-primary-items__end sidebar-primary__section"> |
| </div> |
| |
| <div id="rtd-footer-container"></div> |
| |
| |
| </div> |
| |
| <main id="main-content" class="bd-main"> |
| |
| |
| <div class="bd-content"> |
| <div class="bd-article-container"> |
| |
| <div class="bd-header-article"> |
| <div class="header-article-items header-article__inner"> |
| |
| <div class="header-article-items__start"> |
| |
| <div class="header-article-item"> |
| |
| |
| |
| <nav aria-label="Breadcrumbs"> |
| <ul class="bd-breadcrumbs" role="navigation" aria-label="Breadcrumb"> |
| |
| <li class="breadcrumb-item breadcrumb-home"> |
| <a href="../../../index.html" class="nav-link" aria-label="Home"> |
| <i class="fa-solid fa-home"></i> |
| </a> |
| </li> |
| |
| <li class="breadcrumb-item"><a href="../../index.html" class="nav-link">Module code</a></li> |
| |
| <li class="breadcrumb-item active" aria-current="page">pyspark.ml.evaluation</li> |
| </ul> |
| </nav> |
| </div> |
| |
| </div> |
| |
| |
| </div> |
| </div> |
| |
| |
| |
| |
| <div id="searchbox"></div> |
| <article class="bd-article" role="main"> |
| |
| <h1>Source code for pyspark.ml.evaluation</h1><div class="highlight"><pre> |
| <span></span><span class="c1">#</span> |
| <span class="c1"># Licensed to the Apache Software Foundation (ASF) under one or more</span> |
| <span class="c1"># contributor license agreements. See the NOTICE file distributed with</span> |
| <span class="c1"># this work for additional information regarding copyright ownership.</span> |
| <span class="c1"># The ASF licenses this file to You under the Apache License, Version 2.0</span> |
| <span class="c1"># (the "License"); you may not use this file except in compliance with</span> |
| <span class="c1"># the License. You may obtain a copy of the License at</span> |
| <span class="c1">#</span> |
| <span class="c1"># http://www.apache.org/licenses/LICENSE-2.0</span> |
| <span class="c1">#</span> |
| <span class="c1"># Unless required by applicable law or agreed to in writing, software</span> |
| <span class="c1"># distributed under the License is distributed on an "AS IS" BASIS,</span> |
| <span class="c1"># WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.</span> |
| <span class="c1"># See the License for the specific language governing permissions and</span> |
| <span class="c1"># limitations under the License.</span> |
| <span class="c1">#</span> |
| |
| <span class="kn">import</span> <span class="nn">sys</span> |
| <span class="kn">from</span> <span class="nn">abc</span> <span class="kn">import</span> <span class="n">abstractmethod</span><span class="p">,</span> <span class="n">ABCMeta</span> |
| <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Any</span><span class="p">,</span> <span class="n">Dict</span><span class="p">,</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">TYPE_CHECKING</span> |
| |
| <span class="kn">from</span> <span class="nn">pyspark</span> <span class="kn">import</span> <span class="n">since</span><span class="p">,</span> <span class="n">keyword_only</span> |
| <span class="kn">from</span> <span class="nn">pyspark.ml.wrapper</span> <span class="kn">import</span> <span class="n">JavaParams</span> |
| <span class="kn">from</span> <span class="nn">pyspark.ml.param</span> <span class="kn">import</span> <span class="n">Param</span><span class="p">,</span> <span class="n">Params</span><span class="p">,</span> <span class="n">TypeConverters</span> |
| <span class="kn">from</span> <span class="nn">pyspark.ml.param.shared</span> <span class="kn">import</span> <span class="p">(</span> |
| <span class="n">HasLabelCol</span><span class="p">,</span> |
| <span class="n">HasPredictionCol</span><span class="p">,</span> |
| <span class="n">HasProbabilityCol</span><span class="p">,</span> |
| <span class="n">HasRawPredictionCol</span><span class="p">,</span> |
| <span class="n">HasFeaturesCol</span><span class="p">,</span> |
| <span class="n">HasWeightCol</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="kn">from</span> <span class="nn">pyspark.ml.common</span> <span class="kn">import</span> <span class="n">inherit_doc</span> |
| <span class="kn">from</span> <span class="nn">pyspark.ml.util</span> <span class="kn">import</span> <span class="n">JavaMLReadable</span><span class="p">,</span> <span class="n">JavaMLWritable</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql.dataframe</span> <span class="kn">import</span> <span class="n">DataFrame</span> |
| |
| <span class="k">if</span> <span class="n">TYPE_CHECKING</span><span class="p">:</span> |
| <span class="kn">from</span> <span class="nn">pyspark.ml._typing</span> <span class="kn">import</span> <span class="p">(</span> |
| <span class="n">ParamMap</span><span class="p">,</span> |
| <span class="n">BinaryClassificationEvaluatorMetricType</span><span class="p">,</span> |
| <span class="n">ClusteringEvaluatorDistanceMeasureType</span><span class="p">,</span> |
| <span class="n">ClusteringEvaluatorMetricType</span><span class="p">,</span> |
| <span class="n">MulticlassClassificationEvaluatorMetricType</span><span class="p">,</span> |
| <span class="n">MultilabelClassificationEvaluatorMetricType</span><span class="p">,</span> |
| <span class="n">RankingEvaluatorMetricType</span><span class="p">,</span> |
| <span class="n">RegressionEvaluatorMetricType</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| |
| <span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span> |
| <span class="s2">"Evaluator"</span><span class="p">,</span> |
| <span class="s2">"BinaryClassificationEvaluator"</span><span class="p">,</span> |
| <span class="s2">"RegressionEvaluator"</span><span class="p">,</span> |
| <span class="s2">"MulticlassClassificationEvaluator"</span><span class="p">,</span> |
| <span class="s2">"MultilabelClassificationEvaluator"</span><span class="p">,</span> |
| <span class="s2">"ClusteringEvaluator"</span><span class="p">,</span> |
| <span class="s2">"RankingEvaluator"</span><span class="p">,</span> |
| <span class="p">]</span> |
| |
| |
| <div class="viewcode-block" id="Evaluator"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.Evaluator.html#pyspark.ml.evaluation.Evaluator">[docs]</a><span class="nd">@inherit_doc</span> |
| <span class="k">class</span> <span class="nc">Evaluator</span><span class="p">(</span><span class="n">Params</span><span class="p">,</span> <span class="n">metaclass</span><span class="o">=</span><span class="n">ABCMeta</span><span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Base class for evaluators that compute metrics from predictions.</span> |
| |
| <span class="sd"> .. versionadded:: 1.4.0</span> |
| <span class="sd"> """</span> |
| |
| <span class="nd">@abstractmethod</span> |
| <span class="k">def</span> <span class="nf">_evaluate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">dataset</span><span class="p">:</span> <span class="n">DataFrame</span><span class="p">)</span> <span class="o">-></span> <span class="nb">float</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Evaluates the output.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> dataset : :py:class:`pyspark.sql.DataFrame`</span> |
| <span class="sd"> a dataset that contains labels/observations and predictions</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> float</span> |
| <span class="sd"> metric</span> |
| <span class="sd"> """</span> |
| <span class="k">raise</span> <span class="ne">NotImplementedError</span><span class="p">()</span> |
| |
| <div class="viewcode-block" id="Evaluator.evaluate"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.Evaluator.html#pyspark.ml.evaluation.Evaluator.evaluate">[docs]</a> <span class="k">def</span> <span class="nf">evaluate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">dataset</span><span class="p">:</span> <span class="n">DataFrame</span><span class="p">,</span> <span class="n">params</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="s2">"ParamMap"</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">)</span> <span class="o">-></span> <span class="nb">float</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Evaluates the output with optional parameters.</span> |
| |
| <span class="sd"> .. versionadded:: 1.4.0</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> dataset : :py:class:`pyspark.sql.DataFrame`</span> |
| <span class="sd"> a dataset that contains labels/observations and predictions</span> |
| <span class="sd"> params : dict, optional</span> |
| <span class="sd"> an optional param map that overrides embedded params</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> float</span> |
| <span class="sd"> metric</span> |
| <span class="sd"> """</span> |
| <span class="k">if</span> <span class="n">params</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span> |
| <span class="n">params</span> <span class="o">=</span> <span class="nb">dict</span><span class="p">()</span> |
| <span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">params</span><span class="p">,</span> <span class="nb">dict</span><span class="p">):</span> |
| <span class="k">if</span> <span class="n">params</span><span class="p">:</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">copy</span><span class="p">(</span><span class="n">params</span><span class="p">)</span><span class="o">.</span><span class="n">_evaluate</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_evaluate</span><span class="p">(</span><span class="n">dataset</span><span class="p">)</span> |
| <span class="k">else</span><span class="p">:</span> |
| <span class="k">raise</span> <span class="ne">TypeError</span><span class="p">(</span><span class="s2">"Params must be a param map but got </span><span class="si">%s</span><span class="s2">."</span> <span class="o">%</span> <span class="nb">type</span><span class="p">(</span><span class="n">params</span><span class="p">))</span></div> |
| |
| <div class="viewcode-block" id="Evaluator.isLargerBetter"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.Evaluator.html#pyspark.ml.evaluation.Evaluator.isLargerBetter">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.5.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">isLargerBetter</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">bool</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Indicates whether the metric returned by :py:meth:`evaluate` should be maximized</span> |
| <span class="sd"> (True, default) or minimized (False).</span> |
| <span class="sd"> A given evaluator may support multiple metrics which may be maximized or minimized.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="kc">True</span></div></div> |
| |
| |
| <span class="nd">@inherit_doc</span> |
| <span class="k">class</span> <span class="nc">JavaEvaluator</span><span class="p">(</span><span class="n">JavaParams</span><span class="p">,</span> <span class="n">Evaluator</span><span class="p">,</span> <span class="n">metaclass</span><span class="o">=</span><span class="n">ABCMeta</span><span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Base class for :py:class:`Evaluator`s that wrap Java/Scala</span> |
| <span class="sd"> implementations.</span> |
| <span class="sd"> """</span> |
| |
| <span class="k">def</span> <span class="nf">_evaluate</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">dataset</span><span class="p">:</span> <span class="n">DataFrame</span><span class="p">)</span> <span class="o">-></span> <span class="nb">float</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Evaluates the output.</span> |
| |
| <span class="sd"> Parameters</span> |
| <span class="sd"> ----------</span> |
| <span class="sd"> dataset : :py:class:`pyspark.sql.DataFrame`</span> |
| <span class="sd"> a dataset that contains labels/observations and predictions</span> |
| |
| <span class="sd"> Returns</span> |
| <span class="sd"> -------</span> |
| <span class="sd"> float</span> |
| <span class="sd"> evaluation metric</span> |
| <span class="sd"> """</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_transfer_params_to_java</span><span class="p">()</span> |
| <span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span><span class="o">.</span><span class="n">evaluate</span><span class="p">(</span><span class="n">dataset</span><span class="o">.</span><span class="n">_jdf</span><span class="p">)</span> |
| |
| <span class="k">def</span> <span class="nf">isLargerBetter</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">bool</span><span class="p">:</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_transfer_params_to_java</span><span class="p">()</span> |
| <span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span><span class="o">.</span><span class="n">isLargerBetter</span><span class="p">()</span> |
| |
| |
| <div class="viewcode-block" id="BinaryClassificationEvaluator"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.BinaryClassificationEvaluator.html#pyspark.ml.evaluation.BinaryClassificationEvaluator">[docs]</a><span class="nd">@inherit_doc</span> |
| <span class="k">class</span> <span class="nc">BinaryClassificationEvaluator</span><span class="p">(</span> |
| <span class="n">JavaEvaluator</span><span class="p">,</span> |
| <span class="n">HasLabelCol</span><span class="p">,</span> |
| <span class="n">HasRawPredictionCol</span><span class="p">,</span> |
| <span class="n">HasWeightCol</span><span class="p">,</span> |
| <span class="n">JavaMLReadable</span><span class="p">[</span><span class="s2">"BinaryClassificationEvaluator"</span><span class="p">],</span> |
| <span class="n">JavaMLWritable</span><span class="p">,</span> |
| <span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Evaluator for binary classification, which expects input columns rawPrediction, label</span> |
| <span class="sd"> and an optional weight column.</span> |
| <span class="sd"> The rawPrediction column can be of type double (binary 0/1 prediction, or probability of label</span> |
| <span class="sd"> 1) or of type vector (length-2 vector of raw predictions, scores, or label probabilities).</span> |
| |
| <span class="sd"> .. versionadded:: 1.4.0</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> from pyspark.ml.linalg import Vectors</span> |
| <span class="sd"> >>> scoreAndLabels = map(lambda x: (Vectors.dense([1.0 - x[0], x[0]]), x[1]),</span> |
| <span class="sd"> ... [(0.1, 0.0), (0.1, 1.0), (0.4, 0.0), (0.6, 0.0), (0.6, 1.0), (0.6, 1.0), (0.8, 1.0)])</span> |
| <span class="sd"> >>> dataset = spark.createDataFrame(scoreAndLabels, ["raw", "label"])</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> >>> evaluator = BinaryClassificationEvaluator()</span> |
| <span class="sd"> >>> evaluator.setRawPredictionCol("raw")</span> |
| <span class="sd"> BinaryClassificationEvaluator...</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset)</span> |
| <span class="sd"> 0.70...</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset, {evaluator.metricName: "areaUnderPR"})</span> |
| <span class="sd"> 0.83...</span> |
| <span class="sd"> >>> bce_path = temp_path + "/bce"</span> |
| <span class="sd"> >>> evaluator.save(bce_path)</span> |
| <span class="sd"> >>> evaluator2 = BinaryClassificationEvaluator.load(bce_path)</span> |
| <span class="sd"> >>> str(evaluator2.getRawPredictionCol())</span> |
| <span class="sd"> 'raw'</span> |
| <span class="sd"> >>> scoreAndLabelsAndWeight = map(lambda x: (Vectors.dense([1.0 - x[0], x[0]]), x[1], x[2]),</span> |
| <span class="sd"> ... [(0.1, 0.0, 1.0), (0.1, 1.0, 0.9), (0.4, 0.0, 0.7), (0.6, 0.0, 0.9),</span> |
| <span class="sd"> ... (0.6, 1.0, 1.0), (0.6, 1.0, 0.3), (0.8, 1.0, 1.0)])</span> |
| <span class="sd"> >>> dataset = spark.createDataFrame(scoreAndLabelsAndWeight, ["raw", "label", "weight"])</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> >>> evaluator = BinaryClassificationEvaluator(rawPredictionCol="raw", weightCol="weight")</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset)</span> |
| <span class="sd"> 0.70...</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset, {evaluator.metricName: "areaUnderPR"})</span> |
| <span class="sd"> 0.82...</span> |
| <span class="sd"> >>> evaluator.getNumBins()</span> |
| <span class="sd"> 1000</span> |
| <span class="sd"> """</span> |
| |
| <span class="n">metricName</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="s2">"BinaryClassificationEvaluatorMetricType"</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"metricName"</span><span class="p">,</span> |
| <span class="s2">"metric name in evaluation (areaUnderROC|areaUnderPR)"</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span> <span class="c1"># type: ignore[arg-type]</span> |
| <span class="p">)</span> |
| |
| <span class="n">numBins</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"numBins"</span><span class="p">,</span> |
| <span class="s2">"Number of bins to down-sample the curves "</span> |
| <span class="s2">"(ROC curve, PR curve) in area computation. If 0, no down-sampling will "</span> |
| <span class="s2">"occur. Must be >= 0."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toInt</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="n">_input_kwargs</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]</span> |
| |
| <span class="nd">@keyword_only</span> |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="o">*</span><span class="p">,</span> |
| <span class="n">rawPredictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"rawPrediction"</span><span class="p">,</span> |
| <span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"label"</span><span class="p">,</span> |
| <span class="n">metricName</span><span class="p">:</span> <span class="s2">"BinaryClassificationEvaluatorMetricType"</span> <span class="o">=</span> <span class="s2">"areaUnderROC"</span><span class="p">,</span> |
| <span class="n">weightCol</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="n">numBins</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1000</span><span class="p">,</span> |
| <span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> __init__(self, \\*, rawPredictionCol="rawPrediction", labelCol="label", \</span> |
| <span class="sd"> metricName="areaUnderROC", weightCol=None, numBins=1000)</span> |
| <span class="sd"> """</span> |
| <span class="nb">super</span><span class="p">(</span><span class="n">BinaryClassificationEvaluator</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_new_java_obj</span><span class="p">(</span> |
| <span class="s2">"org.apache.spark.ml.evaluation.BinaryClassificationEvaluator"</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">uid</span> |
| <span class="p">)</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_setDefault</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="s2">"areaUnderROC"</span><span class="p">,</span> <span class="n">numBins</span><span class="o">=</span><span class="mi">1000</span><span class="p">)</span> |
| <span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> |
| |
| <div class="viewcode-block" id="BinaryClassificationEvaluator.setMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.BinaryClassificationEvaluator.html#pyspark.ml.evaluation.BinaryClassificationEvaluator.setMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.4.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setMetricName</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="s2">"BinaryClassificationEvaluatorMetricType"</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"BinaryClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`metricName`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="BinaryClassificationEvaluator.getMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.BinaryClassificationEvaluator.html#pyspark.ml.evaluation.BinaryClassificationEvaluator.getMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.4.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getMetricName</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">str</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of metricName or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">metricName</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="BinaryClassificationEvaluator.setNumBins"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.BinaryClassificationEvaluator.html#pyspark.ml.evaluation.BinaryClassificationEvaluator.setNumBins">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setNumBins</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"BinaryClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`numBins`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">numBins</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="BinaryClassificationEvaluator.getNumBins"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.BinaryClassificationEvaluator.html#pyspark.ml.evaluation.BinaryClassificationEvaluator.getNumBins">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getNumBins</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of numBins or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">numBins</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="BinaryClassificationEvaluator.setLabelCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.BinaryClassificationEvaluator.html#pyspark.ml.evaluation.BinaryClassificationEvaluator.setLabelCol">[docs]</a> <span class="k">def</span> <span class="nf">setLabelCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"BinaryClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`labelCol`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">labelCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="BinaryClassificationEvaluator.setRawPredictionCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.BinaryClassificationEvaluator.html#pyspark.ml.evaluation.BinaryClassificationEvaluator.setRawPredictionCol">[docs]</a> <span class="k">def</span> <span class="nf">setRawPredictionCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"BinaryClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`rawPredictionCol`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">rawPredictionCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="BinaryClassificationEvaluator.setWeightCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.BinaryClassificationEvaluator.html#pyspark.ml.evaluation.BinaryClassificationEvaluator.setWeightCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setWeightCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"BinaryClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`weightCol`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">weightCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="BinaryClassificationEvaluator.setParams"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.BinaryClassificationEvaluator.html#pyspark.ml.evaluation.BinaryClassificationEvaluator.setParams">[docs]</a> <span class="nd">@keyword_only</span> |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.4.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setParams</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="o">*</span><span class="p">,</span> |
| <span class="n">rawPredictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"rawPrediction"</span><span class="p">,</span> |
| <span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"label"</span><span class="p">,</span> |
| <span class="n">metricName</span><span class="p">:</span> <span class="s2">"BinaryClassificationEvaluatorMetricType"</span> <span class="o">=</span> <span class="s2">"areaUnderROC"</span><span class="p">,</span> |
| <span class="n">weightCol</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="n">numBins</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">1000</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"BinaryClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> setParams(self, \\*, rawPredictionCol="rawPrediction", labelCol="label", \</span> |
| <span class="sd"> metricName="areaUnderROC", weightCol=None, numBins=1000)</span> |
| <span class="sd"> Sets params for binary classification evaluator.</span> |
| <span class="sd"> """</span> |
| <span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div></div> |
| |
| |
| <div class="viewcode-block" id="RegressionEvaluator"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RegressionEvaluator.html#pyspark.ml.evaluation.RegressionEvaluator">[docs]</a><span class="nd">@inherit_doc</span> |
| <span class="k">class</span> <span class="nc">RegressionEvaluator</span><span class="p">(</span> |
| <span class="n">JavaEvaluator</span><span class="p">,</span> |
| <span class="n">HasLabelCol</span><span class="p">,</span> |
| <span class="n">HasPredictionCol</span><span class="p">,</span> |
| <span class="n">HasWeightCol</span><span class="p">,</span> |
| <span class="n">JavaMLReadable</span><span class="p">[</span><span class="s2">"RegressionEvaluator"</span><span class="p">],</span> |
| <span class="n">JavaMLWritable</span><span class="p">,</span> |
| <span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Evaluator for Regression, which expects input columns prediction, label</span> |
| <span class="sd"> and an optional weight column.</span> |
| |
| <span class="sd"> .. versionadded:: 1.4.0</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> scoreAndLabels = [(-28.98343821, -27.0), (20.21491975, 21.5),</span> |
| <span class="sd"> ... (-25.98418959, -22.0), (30.69731842, 33.0), (74.69283752, 71.0)]</span> |
| <span class="sd"> >>> dataset = spark.createDataFrame(scoreAndLabels, ["raw", "label"])</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> >>> evaluator = RegressionEvaluator()</span> |
| <span class="sd"> >>> evaluator.setPredictionCol("raw")</span> |
| <span class="sd"> RegressionEvaluator...</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset)</span> |
| <span class="sd"> 2.842...</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset, {evaluator.metricName: "r2"})</span> |
| <span class="sd"> 0.993...</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset, {evaluator.metricName: "mae"})</span> |
| <span class="sd"> 2.649...</span> |
| <span class="sd"> >>> re_path = temp_path + "/re"</span> |
| <span class="sd"> >>> evaluator.save(re_path)</span> |
| <span class="sd"> >>> evaluator2 = RegressionEvaluator.load(re_path)</span> |
| <span class="sd"> >>> str(evaluator2.getPredictionCol())</span> |
| <span class="sd"> 'raw'</span> |
| <span class="sd"> >>> scoreAndLabelsAndWeight = [(-28.98343821, -27.0, 1.0), (20.21491975, 21.5, 0.8),</span> |
| <span class="sd"> ... (-25.98418959, -22.0, 1.0), (30.69731842, 33.0, 0.6), (74.69283752, 71.0, 0.2)]</span> |
| <span class="sd"> >>> dataset = spark.createDataFrame(scoreAndLabelsAndWeight, ["raw", "label", "weight"])</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> >>> evaluator = RegressionEvaluator(predictionCol="raw", weightCol="weight")</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset)</span> |
| <span class="sd"> 2.740...</span> |
| <span class="sd"> >>> evaluator.getThroughOrigin()</span> |
| <span class="sd"> False</span> |
| <span class="sd"> """</span> |
| |
| <span class="n">metricName</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="s2">"RegressionEvaluatorMetricType"</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"metricName"</span><span class="p">,</span> |
| <span class="w"> </span><span class="sd">"""metric name in evaluation - one of:</span> |
| <span class="sd"> rmse - root mean squared error (default)</span> |
| <span class="sd"> mse - mean squared error</span> |
| <span class="sd"> r2 - r^2 metric</span> |
| <span class="sd"> mae - mean absolute error</span> |
| <span class="sd"> var - explained variance."""</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span> <span class="c1"># type: ignore[arg-type]</span> |
| <span class="p">)</span> |
| |
| <span class="n">throughOrigin</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">bool</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"throughOrigin"</span><span class="p">,</span> |
| <span class="s2">"whether the regression is through the origin."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toBoolean</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="n">_input_kwargs</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]</span> |
| |
| <span class="nd">@keyword_only</span> |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="o">*</span><span class="p">,</span> |
| <span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"prediction"</span><span class="p">,</span> |
| <span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"label"</span><span class="p">,</span> |
| <span class="n">metricName</span><span class="p">:</span> <span class="s2">"RegressionEvaluatorMetricType"</span> <span class="o">=</span> <span class="s2">"rmse"</span><span class="p">,</span> |
| <span class="n">weightCol</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="n">throughOrigin</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span> |
| <span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> __init__(self, \\*, predictionCol="prediction", labelCol="label", \</span> |
| <span class="sd"> metricName="rmse", weightCol=None, throughOrigin=False)</span> |
| <span class="sd"> """</span> |
| <span class="nb">super</span><span class="p">(</span><span class="n">RegressionEvaluator</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_new_java_obj</span><span class="p">(</span> |
| <span class="s2">"org.apache.spark.ml.evaluation.RegressionEvaluator"</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">uid</span> |
| <span class="p">)</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_setDefault</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="s2">"rmse"</span><span class="p">,</span> <span class="n">throughOrigin</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span> |
| <span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> |
| |
| <div class="viewcode-block" id="RegressionEvaluator.setMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RegressionEvaluator.html#pyspark.ml.evaluation.RegressionEvaluator.setMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.4.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setMetricName</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="s2">"RegressionEvaluatorMetricType"</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"RegressionEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`metricName`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="RegressionEvaluator.getMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RegressionEvaluator.html#pyspark.ml.evaluation.RegressionEvaluator.getMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.4.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getMetricName</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"RegressionEvaluatorMetricType"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of metricName or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">metricName</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="RegressionEvaluator.setThroughOrigin"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RegressionEvaluator.html#pyspark.ml.evaluation.RegressionEvaluator.setThroughOrigin">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setThroughOrigin</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">bool</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"RegressionEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`throughOrigin`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">throughOrigin</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="RegressionEvaluator.getThroughOrigin"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RegressionEvaluator.html#pyspark.ml.evaluation.RegressionEvaluator.getThroughOrigin">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getThroughOrigin</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">bool</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of throughOrigin or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">throughOrigin</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="RegressionEvaluator.setLabelCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RegressionEvaluator.html#pyspark.ml.evaluation.RegressionEvaluator.setLabelCol">[docs]</a> <span class="k">def</span> <span class="nf">setLabelCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"RegressionEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`labelCol`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">labelCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="RegressionEvaluator.setPredictionCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RegressionEvaluator.html#pyspark.ml.evaluation.RegressionEvaluator.setPredictionCol">[docs]</a> <span class="k">def</span> <span class="nf">setPredictionCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"RegressionEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`predictionCol`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">predictionCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="RegressionEvaluator.setWeightCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RegressionEvaluator.html#pyspark.ml.evaluation.RegressionEvaluator.setWeightCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setWeightCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"RegressionEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`weightCol`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">weightCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="RegressionEvaluator.setParams"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RegressionEvaluator.html#pyspark.ml.evaluation.RegressionEvaluator.setParams">[docs]</a> <span class="nd">@keyword_only</span> |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.4.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setParams</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="o">*</span><span class="p">,</span> |
| <span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"prediction"</span><span class="p">,</span> |
| <span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"label"</span><span class="p">,</span> |
| <span class="n">metricName</span><span class="p">:</span> <span class="s2">"RegressionEvaluatorMetricType"</span> <span class="o">=</span> <span class="s2">"rmse"</span><span class="p">,</span> |
| <span class="n">weightCol</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="n">throughOrigin</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"RegressionEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> setParams(self, \\*, predictionCol="prediction", labelCol="label", \</span> |
| <span class="sd"> metricName="rmse", weightCol=None, throughOrigin=False)</span> |
| <span class="sd"> Sets params for regression evaluator.</span> |
| <span class="sd"> """</span> |
| <span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div></div> |
| |
| |
| <div class="viewcode-block" id="MulticlassClassificationEvaluator"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator">[docs]</a><span class="nd">@inherit_doc</span> |
| <span class="k">class</span> <span class="nc">MulticlassClassificationEvaluator</span><span class="p">(</span> |
| <span class="n">JavaEvaluator</span><span class="p">,</span> |
| <span class="n">HasLabelCol</span><span class="p">,</span> |
| <span class="n">HasPredictionCol</span><span class="p">,</span> |
| <span class="n">HasWeightCol</span><span class="p">,</span> |
| <span class="n">HasProbabilityCol</span><span class="p">,</span> |
| <span class="n">JavaMLReadable</span><span class="p">[</span><span class="s2">"MulticlassClassificationEvaluator"</span><span class="p">],</span> |
| <span class="n">JavaMLWritable</span><span class="p">,</span> |
| <span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Evaluator for Multiclass Classification, which expects input</span> |
| <span class="sd"> columns: prediction, label, weight (optional) and probabilityCol (only for logLoss).</span> |
| |
| <span class="sd"> .. versionadded:: 1.5.0</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> scoreAndLabels = [(0.0, 0.0), (0.0, 1.0), (0.0, 0.0),</span> |
| <span class="sd"> ... (1.0, 0.0), (1.0, 1.0), (1.0, 1.0), (1.0, 1.0), (2.0, 2.0), (2.0, 0.0)]</span> |
| <span class="sd"> >>> dataset = spark.createDataFrame(scoreAndLabels, ["prediction", "label"])</span> |
| <span class="sd"> >>> evaluator = MulticlassClassificationEvaluator()</span> |
| <span class="sd"> >>> evaluator.setPredictionCol("prediction")</span> |
| <span class="sd"> MulticlassClassificationEvaluator...</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset)</span> |
| <span class="sd"> 0.66...</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset, {evaluator.metricName: "accuracy"})</span> |
| <span class="sd"> 0.66...</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset, {evaluator.metricName: "truePositiveRateByLabel",</span> |
| <span class="sd"> ... evaluator.metricLabel: 1.0})</span> |
| <span class="sd"> 0.75...</span> |
| <span class="sd"> >>> evaluator.setMetricName("hammingLoss")</span> |
| <span class="sd"> MulticlassClassificationEvaluator...</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset)</span> |
| <span class="sd"> 0.33...</span> |
| <span class="sd"> >>> mce_path = temp_path + "/mce"</span> |
| <span class="sd"> >>> evaluator.save(mce_path)</span> |
| <span class="sd"> >>> evaluator2 = MulticlassClassificationEvaluator.load(mce_path)</span> |
| <span class="sd"> >>> str(evaluator2.getPredictionCol())</span> |
| <span class="sd"> 'prediction'</span> |
| <span class="sd"> >>> scoreAndLabelsAndWeight = [(0.0, 0.0, 1.0), (0.0, 1.0, 1.0), (0.0, 0.0, 1.0),</span> |
| <span class="sd"> ... (1.0, 0.0, 1.0), (1.0, 1.0, 1.0), (1.0, 1.0, 1.0), (1.0, 1.0, 1.0),</span> |
| <span class="sd"> ... (2.0, 2.0, 1.0), (2.0, 0.0, 1.0)]</span> |
| <span class="sd"> >>> dataset = spark.createDataFrame(scoreAndLabelsAndWeight, ["prediction", "label", "weight"])</span> |
| <span class="sd"> >>> evaluator = MulticlassClassificationEvaluator(predictionCol="prediction",</span> |
| <span class="sd"> ... weightCol="weight")</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset)</span> |
| <span class="sd"> 0.66...</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset, {evaluator.metricName: "accuracy"})</span> |
| <span class="sd"> 0.66...</span> |
| <span class="sd"> >>> predictionAndLabelsWithProbabilities = [</span> |
| <span class="sd"> ... (1.0, 1.0, 1.0, [0.1, 0.8, 0.1]), (0.0, 2.0, 1.0, [0.9, 0.05, 0.05]),</span> |
| <span class="sd"> ... (0.0, 0.0, 1.0, [0.8, 0.2, 0.0]), (1.0, 1.0, 1.0, [0.3, 0.65, 0.05])]</span> |
| <span class="sd"> >>> dataset = spark.createDataFrame(predictionAndLabelsWithProbabilities, ["prediction",</span> |
| <span class="sd"> ... "label", "weight", "probability"])</span> |
| <span class="sd"> >>> evaluator = MulticlassClassificationEvaluator(predictionCol="prediction",</span> |
| <span class="sd"> ... probabilityCol="probability")</span> |
| <span class="sd"> >>> evaluator.setMetricName("logLoss")</span> |
| <span class="sd"> MulticlassClassificationEvaluator...</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset)</span> |
| <span class="sd"> 0.9682...</span> |
| <span class="sd"> """</span> |
| |
| <span class="n">metricName</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="s2">"MulticlassClassificationEvaluatorMetricType"</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"metricName"</span><span class="p">,</span> |
| <span class="s2">"metric name in evaluation "</span> |
| <span class="s2">"(f1|accuracy|weightedPrecision|weightedRecall|weightedTruePositiveRate| "</span> |
| <span class="s2">"weightedFalsePositiveRate|weightedFMeasure|truePositiveRateByLabel| "</span> |
| <span class="s2">"falsePositiveRateByLabel|precisionByLabel|recallByLabel|fMeasureByLabel| "</span> |
| <span class="s2">"logLoss|hammingLoss)"</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span> <span class="c1"># type: ignore[arg-type]</span> |
| <span class="p">)</span> |
| <span class="n">metricLabel</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"metricLabel"</span><span class="p">,</span> |
| <span class="s2">"The class whose metric will be computed in truePositiveRateByLabel|"</span> |
| <span class="s2">"falsePositiveRateByLabel|precisionByLabel|recallByLabel|fMeasureByLabel."</span> |
| <span class="s2">" Must be >= 0. The default value is 0."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toFloat</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="n">beta</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"beta"</span><span class="p">,</span> |
| <span class="s2">"The beta value used in weightedFMeasure|fMeasureByLabel."</span> |
| <span class="s2">" Must be > 0. The default value is 1."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toFloat</span><span class="p">,</span> |
| <span class="p">)</span> |
| <span class="n">eps</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"eps"</span><span class="p">,</span> |
| <span class="s2">"log-loss is undefined for p=0 or p=1, so probabilities are clipped to "</span> |
| <span class="s2">"max(eps, min(1 - eps, p)). "</span> |
| <span class="s2">"Must be in range (0, 0.5). The default value is 1e-15."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toFloat</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="n">_input_kwargs</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]</span> |
| |
| <span class="nd">@keyword_only</span> |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="o">*</span><span class="p">,</span> |
| <span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"prediction"</span><span class="p">,</span> |
| <span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"label"</span><span class="p">,</span> |
| <span class="n">metricName</span><span class="p">:</span> <span class="s2">"MulticlassClassificationEvaluatorMetricType"</span> <span class="o">=</span> <span class="s2">"f1"</span><span class="p">,</span> |
| <span class="n">weightCol</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="n">metricLabel</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">,</span> |
| <span class="n">beta</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">,</span> |
| <span class="n">probabilityCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"probability"</span><span class="p">,</span> |
| <span class="n">eps</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-15</span><span class="p">,</span> |
| <span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> __init__(self, \\*, predictionCol="prediction", labelCol="label", \</span> |
| <span class="sd"> metricName="f1", weightCol=None, metricLabel=0.0, beta=1.0, \</span> |
| <span class="sd"> probabilityCol="probability", eps=1e-15)</span> |
| <span class="sd"> """</span> |
| <span class="nb">super</span><span class="p">(</span><span class="n">MulticlassClassificationEvaluator</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_new_java_obj</span><span class="p">(</span> |
| <span class="s2">"org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator"</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">uid</span> |
| <span class="p">)</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_setDefault</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="s2">"f1"</span><span class="p">,</span> <span class="n">metricLabel</span><span class="o">=</span><span class="mf">0.0</span><span class="p">,</span> <span class="n">beta</span><span class="o">=</span><span class="mf">1.0</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="mf">1e-15</span><span class="p">)</span> |
| <span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> |
| |
| <div class="viewcode-block" id="MulticlassClassificationEvaluator.setMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.setMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.5.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setMetricName</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="s2">"MulticlassClassificationEvaluatorMetricType"</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"MulticlassClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`metricName`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="MulticlassClassificationEvaluator.getMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.getMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.5.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getMetricName</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"MulticlassClassificationEvaluatorMetricType"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of metricName or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">metricName</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="MulticlassClassificationEvaluator.setMetricLabel"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.setMetricLabel">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setMetricLabel</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"MulticlassClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`metricLabel`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">metricLabel</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="MulticlassClassificationEvaluator.getMetricLabel"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.getMetricLabel">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getMetricLabel</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">float</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of metricLabel or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">metricLabel</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="MulticlassClassificationEvaluator.setBeta"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.setBeta">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setBeta</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"MulticlassClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`beta`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">beta</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="MulticlassClassificationEvaluator.getBeta"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.getBeta">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getBeta</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">float</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of beta or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">beta</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="MulticlassClassificationEvaluator.setEps"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.setEps">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setEps</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"MulticlassClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`eps`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">eps</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="MulticlassClassificationEvaluator.getEps"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.getEps">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getEps</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">float</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of eps or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="MulticlassClassificationEvaluator.setLabelCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.setLabelCol">[docs]</a> <span class="k">def</span> <span class="nf">setLabelCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"MulticlassClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`labelCol`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">labelCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="MulticlassClassificationEvaluator.setPredictionCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.setPredictionCol">[docs]</a> <span class="k">def</span> <span class="nf">setPredictionCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"MulticlassClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`predictionCol`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">predictionCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="MulticlassClassificationEvaluator.setProbabilityCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.setProbabilityCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setProbabilityCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"MulticlassClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`probabilityCol`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">probabilityCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="MulticlassClassificationEvaluator.setWeightCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.setWeightCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setWeightCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"MulticlassClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`weightCol`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">weightCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="MulticlassClassificationEvaluator.setParams"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MulticlassClassificationEvaluator.html#pyspark.ml.evaluation.MulticlassClassificationEvaluator.setParams">[docs]</a> <span class="nd">@keyword_only</span> |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"1.5.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setParams</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="o">*</span><span class="p">,</span> |
| <span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"prediction"</span><span class="p">,</span> |
| <span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"label"</span><span class="p">,</span> |
| <span class="n">metricName</span><span class="p">:</span> <span class="s2">"MulticlassClassificationEvaluatorMetricType"</span> <span class="o">=</span> <span class="s2">"f1"</span><span class="p">,</span> |
| <span class="n">weightCol</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="n">metricLabel</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">,</span> |
| <span class="n">beta</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span><span class="p">,</span> |
| <span class="n">probabilityCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"probability"</span><span class="p">,</span> |
| <span class="n">eps</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-15</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"MulticlassClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> setParams(self, \\*, predictionCol="prediction", labelCol="label", \</span> |
| <span class="sd"> metricName="f1", weightCol=None, metricLabel=0.0, beta=1.0, \</span> |
| <span class="sd"> probabilityCol="probability", eps=1e-15)</span> |
| <span class="sd"> Sets params for multiclass classification evaluator.</span> |
| <span class="sd"> """</span> |
| <span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div></div> |
| |
| |
| <div class="viewcode-block" id="MultilabelClassificationEvaluator"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MultilabelClassificationEvaluator.html#pyspark.ml.evaluation.MultilabelClassificationEvaluator">[docs]</a><span class="nd">@inherit_doc</span> |
| <span class="k">class</span> <span class="nc">MultilabelClassificationEvaluator</span><span class="p">(</span> |
| <span class="n">JavaEvaluator</span><span class="p">,</span> |
| <span class="n">HasLabelCol</span><span class="p">,</span> |
| <span class="n">HasPredictionCol</span><span class="p">,</span> |
| <span class="n">JavaMLReadable</span><span class="p">[</span><span class="s2">"MultilabelClassificationEvaluator"</span><span class="p">],</span> |
| <span class="n">JavaMLWritable</span><span class="p">,</span> |
| <span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Evaluator for Multilabel Classification, which expects two input</span> |
| <span class="sd"> columns: prediction and label.</span> |
| |
| <span class="sd"> .. versionadded:: 3.0.0</span> |
| |
| <span class="sd"> Notes</span> |
| <span class="sd"> -----</span> |
| <span class="sd"> Experimental</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> scoreAndLabels = [([0.0, 1.0], [0.0, 2.0]), ([0.0, 2.0], [0.0, 1.0]),</span> |
| <span class="sd"> ... ([], [0.0]), ([2.0], [2.0]), ([2.0, 0.0], [2.0, 0.0]),</span> |
| <span class="sd"> ... ([0.0, 1.0, 2.0], [0.0, 1.0]), ([1.0], [1.0, 2.0])]</span> |
| <span class="sd"> >>> dataset = spark.createDataFrame(scoreAndLabels, ["prediction", "label"])</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> >>> evaluator = MultilabelClassificationEvaluator()</span> |
| <span class="sd"> >>> evaluator.setPredictionCol("prediction")</span> |
| <span class="sd"> MultilabelClassificationEvaluator...</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset)</span> |
| <span class="sd"> 0.63...</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset, {evaluator.metricName: "accuracy"})</span> |
| <span class="sd"> 0.54...</span> |
| <span class="sd"> >>> mlce_path = temp_path + "/mlce"</span> |
| <span class="sd"> >>> evaluator.save(mlce_path)</span> |
| <span class="sd"> >>> evaluator2 = MultilabelClassificationEvaluator.load(mlce_path)</span> |
| <span class="sd"> >>> str(evaluator2.getPredictionCol())</span> |
| <span class="sd"> 'prediction'</span> |
| <span class="sd"> """</span> |
| |
| <span class="n">metricName</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="s2">"MultilabelClassificationEvaluatorMetricType"</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"metricName"</span><span class="p">,</span> |
| <span class="s2">"metric name in evaluation "</span> |
| <span class="s2">"(subsetAccuracy|accuracy|hammingLoss|precision|recall|f1Measure|"</span> |
| <span class="s2">"precisionByLabel|recallByLabel|f1MeasureByLabel|microPrecision|"</span> |
| <span class="s2">"microRecall|microF1Measure)"</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span> <span class="c1"># type: ignore[arg-type]</span> |
| <span class="p">)</span> |
| <span class="n">metricLabel</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">float</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"metricLabel"</span><span class="p">,</span> |
| <span class="s2">"The class whose metric will be computed in precisionByLabel|"</span> |
| <span class="s2">"recallByLabel|f1MeasureByLabel. "</span> |
| <span class="s2">"Must be >= 0. The default value is 0."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toFloat</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="n">_input_kwargs</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]</span> |
| |
| <span class="nd">@keyword_only</span> |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="o">*</span><span class="p">,</span> |
| <span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"prediction"</span><span class="p">,</span> |
| <span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"label"</span><span class="p">,</span> |
| <span class="n">metricName</span><span class="p">:</span> <span class="s2">"MultilabelClassificationEvaluatorMetricType"</span> <span class="o">=</span> <span class="s2">"f1Measure"</span><span class="p">,</span> |
| <span class="n">metricLabel</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="kc">None</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> __init__(self, \\*, predictionCol="prediction", labelCol="label", \</span> |
| <span class="sd"> metricName="f1Measure", metricLabel=0.0)</span> |
| <span class="sd"> """</span> |
| <span class="nb">super</span><span class="p">(</span><span class="n">MultilabelClassificationEvaluator</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_new_java_obj</span><span class="p">(</span> |
| <span class="s2">"org.apache.spark.ml.evaluation.MultilabelClassificationEvaluator"</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">uid</span> |
| <span class="p">)</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_setDefault</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="s2">"f1Measure"</span><span class="p">,</span> <span class="n">metricLabel</span><span class="o">=</span><span class="mf">0.0</span><span class="p">)</span> |
| <span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> |
| |
| <div class="viewcode-block" id="MultilabelClassificationEvaluator.setMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MultilabelClassificationEvaluator.html#pyspark.ml.evaluation.MultilabelClassificationEvaluator.setMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setMetricName</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="s2">"MultilabelClassificationEvaluatorMetricType"</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"MultilabelClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`metricName`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="MultilabelClassificationEvaluator.getMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MultilabelClassificationEvaluator.html#pyspark.ml.evaluation.MultilabelClassificationEvaluator.getMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getMetricName</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"MultilabelClassificationEvaluatorMetricType"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of metricName or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">metricName</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="MultilabelClassificationEvaluator.setMetricLabel"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MultilabelClassificationEvaluator.html#pyspark.ml.evaluation.MultilabelClassificationEvaluator.setMetricLabel">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setMetricLabel</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">float</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"MultilabelClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`metricLabel`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">metricLabel</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="MultilabelClassificationEvaluator.getMetricLabel"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MultilabelClassificationEvaluator.html#pyspark.ml.evaluation.MultilabelClassificationEvaluator.getMetricLabel">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getMetricLabel</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">float</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of metricLabel or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">metricLabel</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="MultilabelClassificationEvaluator.setLabelCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MultilabelClassificationEvaluator.html#pyspark.ml.evaluation.MultilabelClassificationEvaluator.setLabelCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setLabelCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"MultilabelClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`labelCol`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">labelCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="MultilabelClassificationEvaluator.setPredictionCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MultilabelClassificationEvaluator.html#pyspark.ml.evaluation.MultilabelClassificationEvaluator.setPredictionCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setPredictionCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"MultilabelClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`predictionCol`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">predictionCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="MultilabelClassificationEvaluator.setParams"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.MultilabelClassificationEvaluator.html#pyspark.ml.evaluation.MultilabelClassificationEvaluator.setParams">[docs]</a> <span class="nd">@keyword_only</span> |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setParams</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="o">*</span><span class="p">,</span> |
| <span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"prediction"</span><span class="p">,</span> |
| <span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"label"</span><span class="p">,</span> |
| <span class="n">metricName</span><span class="p">:</span> <span class="s2">"MultilabelClassificationEvaluatorMetricType"</span> <span class="o">=</span> <span class="s2">"f1Measure"</span><span class="p">,</span> |
| <span class="n">metricLabel</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"MultilabelClassificationEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> setParams(self, \\*, predictionCol="prediction", labelCol="label", \</span> |
| <span class="sd"> metricName="f1Measure", metricLabel=0.0)</span> |
| <span class="sd"> Sets params for multilabel classification evaluator.</span> |
| <span class="sd"> """</span> |
| <span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div></div> |
| |
| |
| <div class="viewcode-block" id="ClusteringEvaluator"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.ClusteringEvaluator.html#pyspark.ml.evaluation.ClusteringEvaluator">[docs]</a><span class="nd">@inherit_doc</span> |
| <span class="k">class</span> <span class="nc">ClusteringEvaluator</span><span class="p">(</span> |
| <span class="n">JavaEvaluator</span><span class="p">,</span> |
| <span class="n">HasPredictionCol</span><span class="p">,</span> |
| <span class="n">HasFeaturesCol</span><span class="p">,</span> |
| <span class="n">HasWeightCol</span><span class="p">,</span> |
| <span class="n">JavaMLReadable</span><span class="p">[</span><span class="s2">"ClusteringEvaluator"</span><span class="p">],</span> |
| <span class="n">JavaMLWritable</span><span class="p">,</span> |
| <span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Evaluator for Clustering results, which expects two input</span> |
| <span class="sd"> columns: prediction and features. The metric computes the Silhouette</span> |
| <span class="sd"> measure using the squared Euclidean distance.</span> |
| |
| <span class="sd"> The Silhouette is a measure for the validation of the consistency</span> |
| <span class="sd"> within clusters. It ranges between 1 and -1, where a value close to</span> |
| <span class="sd"> 1 means that the points in a cluster are close to the other points</span> |
| <span class="sd"> in the same cluster and far from the points of the other clusters.</span> |
| |
| <span class="sd"> .. versionadded:: 2.3.0</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> from pyspark.ml.linalg import Vectors</span> |
| <span class="sd"> >>> featureAndPredictions = map(lambda x: (Vectors.dense(x[0]), x[1]),</span> |
| <span class="sd"> ... [([0.0, 0.5], 0.0), ([0.5, 0.0], 0.0), ([10.0, 11.0], 1.0),</span> |
| <span class="sd"> ... ([10.5, 11.5], 1.0), ([1.0, 1.0], 0.0), ([8.0, 6.0], 1.0)])</span> |
| <span class="sd"> >>> dataset = spark.createDataFrame(featureAndPredictions, ["features", "prediction"])</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> >>> evaluator = ClusteringEvaluator()</span> |
| <span class="sd"> >>> evaluator.setPredictionCol("prediction")</span> |
| <span class="sd"> ClusteringEvaluator...</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset)</span> |
| <span class="sd"> 0.9079...</span> |
| <span class="sd"> >>> featureAndPredictionsWithWeight = map(lambda x: (Vectors.dense(x[0]), x[1], x[2]),</span> |
| <span class="sd"> ... [([0.0, 0.5], 0.0, 2.5), ([0.5, 0.0], 0.0, 2.5), ([10.0, 11.0], 1.0, 2.5),</span> |
| <span class="sd"> ... ([10.5, 11.5], 1.0, 2.5), ([1.0, 1.0], 0.0, 2.5), ([8.0, 6.0], 1.0, 2.5)])</span> |
| <span class="sd"> >>> dataset = spark.createDataFrame(</span> |
| <span class="sd"> ... featureAndPredictionsWithWeight, ["features", "prediction", "weight"])</span> |
| <span class="sd"> >>> evaluator = ClusteringEvaluator()</span> |
| <span class="sd"> >>> evaluator.setPredictionCol("prediction")</span> |
| <span class="sd"> ClusteringEvaluator...</span> |
| <span class="sd"> >>> evaluator.setWeightCol("weight")</span> |
| <span class="sd"> ClusteringEvaluator...</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset)</span> |
| <span class="sd"> 0.9079...</span> |
| <span class="sd"> >>> ce_path = temp_path + "/ce"</span> |
| <span class="sd"> >>> evaluator.save(ce_path)</span> |
| <span class="sd"> >>> evaluator2 = ClusteringEvaluator.load(ce_path)</span> |
| <span class="sd"> >>> str(evaluator2.getPredictionCol())</span> |
| <span class="sd"> 'prediction'</span> |
| <span class="sd"> """</span> |
| |
| <span class="n">metricName</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="s2">"ClusteringEvaluatorMetricType"</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"metricName"</span><span class="p">,</span> |
| <span class="s2">"metric name in evaluation (silhouette)"</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span> <span class="c1"># type: ignore[arg-type]</span> |
| <span class="p">)</span> |
| <span class="n">distanceMeasure</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="s2">"ClusteringEvaluatorDistanceMeasureType"</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"distanceMeasure"</span><span class="p">,</span> |
| <span class="s2">"The distance measure. "</span> <span class="o">+</span> <span class="s2">"Supported options: 'squaredEuclidean' and 'cosine'."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span> <span class="c1"># type: ignore[arg-type]</span> |
| <span class="p">)</span> |
| |
| <span class="n">_input_kwargs</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]</span> |
| |
| <span class="nd">@keyword_only</span> |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="o">*</span><span class="p">,</span> |
| <span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"prediction"</span><span class="p">,</span> |
| <span class="n">featuresCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"features"</span><span class="p">,</span> |
| <span class="n">metricName</span><span class="p">:</span> <span class="s2">"ClusteringEvaluatorMetricType"</span> <span class="o">=</span> <span class="s2">"silhouette"</span><span class="p">,</span> |
| <span class="n">distanceMeasure</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"squaredEuclidean"</span><span class="p">,</span> |
| <span class="n">weightCol</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> __init__(self, \\*, predictionCol="prediction", featuresCol="features", \</span> |
| <span class="sd"> metricName="silhouette", distanceMeasure="squaredEuclidean", weightCol=None)</span> |
| <span class="sd"> """</span> |
| <span class="nb">super</span><span class="p">(</span><span class="n">ClusteringEvaluator</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_new_java_obj</span><span class="p">(</span> |
| <span class="s2">"org.apache.spark.ml.evaluation.ClusteringEvaluator"</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">uid</span> |
| <span class="p">)</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_setDefault</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="s2">"silhouette"</span><span class="p">,</span> <span class="n">distanceMeasure</span><span class="o">=</span><span class="s2">"squaredEuclidean"</span><span class="p">)</span> |
| <span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> |
| |
| <div class="viewcode-block" id="ClusteringEvaluator.setParams"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.ClusteringEvaluator.html#pyspark.ml.evaluation.ClusteringEvaluator.setParams">[docs]</a> <span class="nd">@keyword_only</span> |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"2.3.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setParams</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="o">*</span><span class="p">,</span> |
| <span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"prediction"</span><span class="p">,</span> |
| <span class="n">featuresCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"features"</span><span class="p">,</span> |
| <span class="n">metricName</span><span class="p">:</span> <span class="s2">"ClusteringEvaluatorMetricType"</span> <span class="o">=</span> <span class="s2">"silhouette"</span><span class="p">,</span> |
| <span class="n">distanceMeasure</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"squaredEuclidean"</span><span class="p">,</span> |
| <span class="n">weightCol</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">str</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"ClusteringEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> setParams(self, \\*, predictionCol="prediction", featuresCol="features", \</span> |
| <span class="sd"> metricName="silhouette", distanceMeasure="squaredEuclidean", weightCol=None)</span> |
| <span class="sd"> Sets params for clustering evaluator.</span> |
| <span class="sd"> """</span> |
| <span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="ClusteringEvaluator.setMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.ClusteringEvaluator.html#pyspark.ml.evaluation.ClusteringEvaluator.setMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"2.3.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setMetricName</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="s2">"ClusteringEvaluatorMetricType"</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"ClusteringEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`metricName`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="ClusteringEvaluator.getMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.ClusteringEvaluator.html#pyspark.ml.evaluation.ClusteringEvaluator.getMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"2.3.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getMetricName</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"ClusteringEvaluatorMetricType"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of metricName or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">metricName</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="ClusteringEvaluator.setDistanceMeasure"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.ClusteringEvaluator.html#pyspark.ml.evaluation.ClusteringEvaluator.setDistanceMeasure">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"2.4.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setDistanceMeasure</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="s2">"ClusteringEvaluatorDistanceMeasureType"</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"ClusteringEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`distanceMeasure`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">distanceMeasure</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="ClusteringEvaluator.getDistanceMeasure"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.ClusteringEvaluator.html#pyspark.ml.evaluation.ClusteringEvaluator.getDistanceMeasure">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"2.4.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getDistanceMeasure</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"ClusteringEvaluatorDistanceMeasureType"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of `distanceMeasure`</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">distanceMeasure</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="ClusteringEvaluator.setFeaturesCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.ClusteringEvaluator.html#pyspark.ml.evaluation.ClusteringEvaluator.setFeaturesCol">[docs]</a> <span class="k">def</span> <span class="nf">setFeaturesCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="s2">"str"</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"ClusteringEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`featuresCol`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">featuresCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="ClusteringEvaluator.setPredictionCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.ClusteringEvaluator.html#pyspark.ml.evaluation.ClusteringEvaluator.setPredictionCol">[docs]</a> <span class="k">def</span> <span class="nf">setPredictionCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"ClusteringEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`predictionCol`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">predictionCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="ClusteringEvaluator.setWeightCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.ClusteringEvaluator.html#pyspark.ml.evaluation.ClusteringEvaluator.setWeightCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.1.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setWeightCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"ClusteringEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`weightCol`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">weightCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div></div> |
| |
| |
| <div class="viewcode-block" id="RankingEvaluator"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RankingEvaluator.html#pyspark.ml.evaluation.RankingEvaluator">[docs]</a><span class="nd">@inherit_doc</span> |
| <span class="k">class</span> <span class="nc">RankingEvaluator</span><span class="p">(</span> |
| <span class="n">JavaEvaluator</span><span class="p">,</span> <span class="n">HasLabelCol</span><span class="p">,</span> <span class="n">HasPredictionCol</span><span class="p">,</span> <span class="n">JavaMLReadable</span><span class="p">[</span><span class="s2">"RankingEvaluator"</span><span class="p">],</span> <span class="n">JavaMLWritable</span> |
| <span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Evaluator for Ranking, which expects two input</span> |
| <span class="sd"> columns: prediction and label.</span> |
| |
| <span class="sd"> .. versionadded:: 3.0.0</span> |
| |
| <span class="sd"> Notes</span> |
| <span class="sd"> -----</span> |
| <span class="sd"> Experimental</span> |
| |
| <span class="sd"> Examples</span> |
| <span class="sd"> --------</span> |
| <span class="sd"> >>> scoreAndLabels = [([1.0, 6.0, 2.0, 7.0, 8.0, 3.0, 9.0, 10.0, 4.0, 5.0],</span> |
| <span class="sd"> ... [1.0, 2.0, 3.0, 4.0, 5.0]),</span> |
| <span class="sd"> ... ([4.0, 1.0, 5.0, 6.0, 2.0, 7.0, 3.0, 8.0, 9.0, 10.0], [1.0, 2.0, 3.0]),</span> |
| <span class="sd"> ... ([1.0, 2.0, 3.0, 4.0, 5.0], [])]</span> |
| <span class="sd"> >>> dataset = spark.createDataFrame(scoreAndLabels, ["prediction", "label"])</span> |
| <span class="sd"> ...</span> |
| <span class="sd"> >>> evaluator = RankingEvaluator()</span> |
| <span class="sd"> >>> evaluator.setPredictionCol("prediction")</span> |
| <span class="sd"> RankingEvaluator...</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset)</span> |
| <span class="sd"> 0.35...</span> |
| <span class="sd"> >>> evaluator.evaluate(dataset, {evaluator.metricName: "precisionAtK", evaluator.k: 2})</span> |
| <span class="sd"> 0.33...</span> |
| <span class="sd"> >>> ranke_path = temp_path + "/ranke"</span> |
| <span class="sd"> >>> evaluator.save(ranke_path)</span> |
| <span class="sd"> >>> evaluator2 = RankingEvaluator.load(ranke_path)</span> |
| <span class="sd"> >>> str(evaluator2.getPredictionCol())</span> |
| <span class="sd"> 'prediction'</span> |
| <span class="sd"> """</span> |
| |
| <span class="n">metricName</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="s2">"RankingEvaluatorMetricType"</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"metricName"</span><span class="p">,</span> |
| <span class="s2">"metric name in evaluation "</span> |
| <span class="s2">"(meanAveragePrecision|meanAveragePrecisionAtK|"</span> |
| <span class="s2">"precisionAtK|ndcgAtK|recallAtK)"</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toString</span><span class="p">,</span> <span class="c1"># type: ignore[arg-type]</span> |
| <span class="p">)</span> |
| <span class="n">k</span><span class="p">:</span> <span class="n">Param</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">Param</span><span class="p">(</span> |
| <span class="n">Params</span><span class="o">.</span><span class="n">_dummy</span><span class="p">(),</span> |
| <span class="s2">"k"</span><span class="p">,</span> |
| <span class="s2">"The ranking position value used in meanAveragePrecisionAtK|precisionAtK|"</span> |
| <span class="s2">"ndcgAtK|recallAtK. Must be > 0. The default value is 10."</span><span class="p">,</span> |
| <span class="n">typeConverter</span><span class="o">=</span><span class="n">TypeConverters</span><span class="o">.</span><span class="n">toInt</span><span class="p">,</span> |
| <span class="p">)</span> |
| |
| <span class="n">_input_kwargs</span><span class="p">:</span> <span class="n">Dict</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">Any</span><span class="p">]</span> |
| |
| <span class="nd">@keyword_only</span> |
| <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="o">*</span><span class="p">,</span> |
| <span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"prediction"</span><span class="p">,</span> |
| <span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"label"</span><span class="p">,</span> |
| <span class="n">metricName</span><span class="p">:</span> <span class="s2">"RankingEvaluatorMetricType"</span> <span class="o">=</span> <span class="s2">"meanAveragePrecision"</span><span class="p">,</span> |
| <span class="n">k</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span><span class="p">,</span> |
| <span class="p">):</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> __init__(self, \\*, predictionCol="prediction", labelCol="label", \</span> |
| <span class="sd"> metricName="meanAveragePrecision", k=10)</span> |
| <span class="sd"> """</span> |
| <span class="nb">super</span><span class="p">(</span><span class="n">RankingEvaluator</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_java_obj</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_new_java_obj</span><span class="p">(</span> |
| <span class="s2">"org.apache.spark.ml.evaluation.RankingEvaluator"</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">uid</span> |
| <span class="p">)</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_setDefault</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="s2">"meanAveragePrecision"</span><span class="p">,</span> <span class="n">k</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span> |
| <span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span> |
| <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span> |
| |
| <div class="viewcode-block" id="RankingEvaluator.setMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RankingEvaluator.html#pyspark.ml.evaluation.RankingEvaluator.setMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setMetricName</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="s2">"RankingEvaluatorMetricType"</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"RankingEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`metricName`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">metricName</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="RankingEvaluator.getMetricName"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RankingEvaluator.html#pyspark.ml.evaluation.RankingEvaluator.getMetricName">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getMetricName</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"RankingEvaluatorMetricType"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of metricName or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">metricName</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="RankingEvaluator.setK"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RankingEvaluator.html#pyspark.ml.evaluation.RankingEvaluator.setK">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setK</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">int</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"RankingEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`k`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">k</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="RankingEvaluator.getK"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RankingEvaluator.html#pyspark.ml.evaluation.RankingEvaluator.getK">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">getK</span><span class="p">(</span><span class="bp">self</span><span class="p">)</span> <span class="o">-></span> <span class="nb">int</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Gets the value of k or its default value.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">getOrDefault</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">k</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="RankingEvaluator.setLabelCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RankingEvaluator.html#pyspark.ml.evaluation.RankingEvaluator.setLabelCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setLabelCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"RankingEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`labelCol`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">labelCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="RankingEvaluator.setPredictionCol"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RankingEvaluator.html#pyspark.ml.evaluation.RankingEvaluator.setPredictionCol">[docs]</a> <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setPredictionCol</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">value</span><span class="p">:</span> <span class="nb">str</span><span class="p">)</span> <span class="o">-></span> <span class="s2">"RankingEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> Sets the value of :py:attr:`predictionCol`.</span> |
| <span class="sd"> """</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="n">predictionCol</span><span class="o">=</span><span class="n">value</span><span class="p">)</span></div> |
| |
| <div class="viewcode-block" id="RankingEvaluator.setParams"><a class="viewcode-back" href="../../../reference/api/pyspark.ml.evaluation.RankingEvaluator.html#pyspark.ml.evaluation.RankingEvaluator.setParams">[docs]</a> <span class="nd">@keyword_only</span> |
| <span class="nd">@since</span><span class="p">(</span><span class="s2">"3.0.0"</span><span class="p">)</span> |
| <span class="k">def</span> <span class="nf">setParams</span><span class="p">(</span> |
| <span class="bp">self</span><span class="p">,</span> |
| <span class="o">*</span><span class="p">,</span> |
| <span class="n">predictionCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"prediction"</span><span class="p">,</span> |
| <span class="n">labelCol</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"label"</span><span class="p">,</span> |
| <span class="n">metricName</span><span class="p">:</span> <span class="s2">"RankingEvaluatorMetricType"</span> <span class="o">=</span> <span class="s2">"meanAveragePrecision"</span><span class="p">,</span> |
| <span class="n">k</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span><span class="p">,</span> |
| <span class="p">)</span> <span class="o">-></span> <span class="s2">"RankingEvaluator"</span><span class="p">:</span> |
| <span class="w"> </span><span class="sd">"""</span> |
| <span class="sd"> setParams(self, \\*, predictionCol="prediction", labelCol="label", \</span> |
| <span class="sd"> metricName="meanAveragePrecision", k=10)</span> |
| <span class="sd"> Sets params for ranking evaluator.</span> |
| <span class="sd"> """</span> |
| <span class="n">kwargs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_input_kwargs</span> |
| <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">_set</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span></div></div> |
| |
| |
| <span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">"__main__"</span><span class="p">:</span> |
| <span class="kn">import</span> <span class="nn">doctest</span> |
| <span class="kn">import</span> <span class="nn">tempfile</span> |
| <span class="kn">import</span> <span class="nn">pyspark.ml.evaluation</span> |
| <span class="kn">from</span> <span class="nn">pyspark.sql</span> <span class="kn">import</span> <span class="n">SparkSession</span> |
| |
| <span class="n">globs</span> <span class="o">=</span> <span class="n">pyspark</span><span class="o">.</span><span class="n">ml</span><span class="o">.</span><span class="n">evaluation</span><span class="o">.</span><span class="vm">__dict__</span><span class="o">.</span><span class="n">copy</span><span class="p">()</span> |
| <span class="c1"># The small batch size here ensures that we see multiple batches,</span> |
| <span class="c1"># even in these small test examples:</span> |
| <span class="n">spark</span> <span class="o">=</span> <span class="n">SparkSession</span><span class="o">.</span><span class="n">builder</span><span class="o">.</span><span class="n">master</span><span class="p">(</span><span class="s2">"local[2]"</span><span class="p">)</span><span class="o">.</span><span class="n">appName</span><span class="p">(</span><span class="s2">"ml.evaluation tests"</span><span class="p">)</span><span class="o">.</span><span class="n">getOrCreate</span><span class="p">()</span> |
| <span class="n">globs</span><span class="p">[</span><span class="s2">"spark"</span><span class="p">]</span> <span class="o">=</span> <span class="n">spark</span> |
| <span class="n">temp_path</span> <span class="o">=</span> <span class="n">tempfile</span><span class="o">.</span><span class="n">mkdtemp</span><span class="p">()</span> |
| <span class="n">globs</span><span class="p">[</span><span class="s2">"temp_path"</span><span class="p">]</span> <span class="o">=</span> <span class="n">temp_path</span> |
| <span class="k">try</span><span class="p">:</span> |
| <span class="p">(</span><span class="n">failure_count</span><span class="p">,</span> <span class="n">test_count</span><span class="p">)</span> <span class="o">=</span> <span class="n">doctest</span><span class="o">.</span><span class="n">testmod</span><span class="p">(</span><span class="n">globs</span><span class="o">=</span><span class="n">globs</span><span class="p">,</span> <span class="n">optionflags</span><span class="o">=</span><span class="n">doctest</span><span class="o">.</span><span class="n">ELLIPSIS</span><span class="p">)</span> |
| <span class="n">spark</span><span class="o">.</span><span class="n">stop</span><span class="p">()</span> |
| <span class="k">finally</span><span class="p">:</span> |
| <span class="kn">from</span> <span class="nn">shutil</span> <span class="kn">import</span> <span class="n">rmtree</span> |
| |
| <span class="k">try</span><span class="p">:</span> |
| <span class="n">rmtree</span><span class="p">(</span><span class="n">temp_path</span><span class="p">)</span> |
| <span class="k">except</span> <span class="ne">OSError</span><span class="p">:</span> |
| <span class="k">pass</span> |
| <span class="k">if</span> <span class="n">failure_count</span><span class="p">:</span> |
| <span class="n">sys</span><span class="o">.</span><span class="n">exit</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> |
| </pre></div> |
| |
| </article> |
| |
| |
| |
| <footer class="bd-footer-article"> |
| |
| <div class="footer-article-items footer-article__inner"> |
| |
| <div class="footer-article-item"><!-- Previous / next buttons --> |
| <div class="prev-next-area"> |
| </div></div> |
| |
| </div> |
| |
| </footer> |
| |
| </div> |
| |
| |
| |
| |
| </div> |
| <footer class="bd-footer-content"> |
| |
| </footer> |
| |
| </main> |
| </div> |
| </div> |
| |
| <!-- Scripts loaded after <body> so the DOM is not blocked --> |
| <script src="../../../_static/scripts/bootstrap.js?digest=e353d410970836974a52"></script> |
| <script src="../../../_static/scripts/pydata-sphinx-theme.js?digest=e353d410970836974a52"></script> |
| |
| <footer class="bd-footer"> |
| <div class="bd-footer__inner bd-page-width"> |
| |
| <div class="footer-items__start"> |
| |
| <div class="footer-item"><p class="copyright"> |
| Copyright @ 2024 The Apache Software Foundation, Licensed under the <a href="https://www.apache.org/licenses/LICENSE-2.0">Apache License, Version 2.0</a>. |
| </p></div> |
| |
| <div class="footer-item"> |
| <p class="sphinx-version"> |
| Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 4.5.0. |
| <br/> |
| </p> |
| </div> |
| |
| </div> |
| |
| |
| <div class="footer-items__end"> |
| |
| <div class="footer-item"><p class="theme-version"> |
| Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.13.3. |
| </p></div> |
| |
| </div> |
| |
| </div> |
| |
| </footer> |
| </body> |
| </html> |