| <!DOCTYPE html> |
| <!-- Generated by pkgdown: do not edit by hand --><html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"><meta name="description" content="Fits generalized linear model against a SparkDataFrame. |
| Users can call summary to print a summary of the fitted model, predict to make |
| predictions on new data, and write.ml/read.ml to save/load fitted models."><!-- Inform modern browsers that this page supports both dark and light color schemes, |
| and the page author prefers light. --><meta name="color-scheme" content="dark light"><script> |
| // If `prefers-color-scheme` is not supported, fall back to light mode. |
| // i.e. In this case, inject the `light` CSS before the others, with |
| // no media filter so that it will be downloaded with highest priority. |
| if (window.matchMedia("(prefers-color-scheme: dark)").media === "not all") { |
| document.documentElement.style.display = "none"; |
| document.head.insertAdjacentHTML( |
| "beforeend", |
| "<link id=\"css\" rel=\"stylesheet\" href=\"https://bootswatch.com/5/flatly/bootstrap.css\" onload=\"document.documentElement.style.display = ''\">" |
| ); |
| } |
| </script><title>Generalized Linear Models — spark.glm • SparkR</title><script src="../deps/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"><link href="../deps/bootstrap-5.3.1/bootstrap.min.css" rel="stylesheet"><script src="../deps/bootstrap-5.3.1/bootstrap.bundle.min.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"><!-- bootstrap-toc --><script src="https://cdn.rawgit.com/afeld/bootstrap-toc/v1.0.1/dist/bootstrap-toc.min.js"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- search --><script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/6.4.6/fuse.js" integrity="sha512-zv6Ywkjyktsohkbp9bb45V6tEMoWhzFzXis+LrMehmJZZSys19Yxf1dopHx7WzIKxr5tK2dVcYmaCk2uqdjF4A==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/autocomplete.js/0.38.0/autocomplete.jquery.min.js" integrity="sha512-GU9ayf+66Xx2TmpxqJpliWbT5PiGYxpaG8rfnBEk1LL8l1KGkRShhngwdXK1UgqhAzWpZHSiYPc09/NwDQIGyg==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/mark.min.js" integrity="sha512-5CYOlHXGh6QpOFA/TeTylKLWfB3ftPsde7AnmhuitiTX4K5SqCLBeKro6sPS8ilsz1Q4NRx3v8Ko2IBiszzdww==" crossorigin="anonymous"></script><!-- pkgdown --><script src="../pkgdown.js"></script><link href="../extra.css" rel="stylesheet"><meta property="og:title" content="Generalized Linear Models — spark.glm"><meta property="og:description" content="Fits generalized linear model against a SparkDataFrame. |
| Users can call summary to print a summary of the fitted model, predict to make |
| predictions on new data, and write.ml/read.ml to save/load fitted models."><!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]> |
| <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> |
| <script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script> |
| <![endif]--><!-- Flatly Theme - Light --><link id="css-light" rel="stylesheet" href="https://bootswatch.com/5/flatly/bootstrap.css" media="(prefers-color-scheme: light), (prefers-color-scheme: no-preference)"><!-- Darkly Theme - Dark --><link id="css-dark" rel="stylesheet" href="https://bootswatch.com/5/darkly/bootstrap.css" media="(prefers-color-scheme: dark)"><!-- preferably CSS --><link rel="stylesheet" href="../preferably.css"><link id="css-code-light" rel="stylesheet" href="../code-color-scheme-light.css" media="(prefers-color-scheme: light), (prefers-color-scheme: no-preference)"><link id="css-code-dark" rel="stylesheet" href="../code-color-scheme-dark.css" media="(prefers-color-scheme: dark)"><script src="../darkswitch.js"></script></head><body> |
| <a href="#main" class="visually-hidden-focusable">Skip to contents</a> |
| |
| |
| <nav class="navbar fixed-top navbar-dark navbar-expand-lg bg-primary"><div class="container"> |
| <a class="external-link navbar-brand" href="https://spark.apache.org/"> |
| <img src="https://spark.apache.org/images/spark-logo-rev.svg" alt="" max-height="100%"></a> |
| |
| <a class="navbar-brand me-2" href="../index.html">SparkR</a> |
| |
| <small class="nav-text text-muted me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="">4.0.0</small> |
| |
| |
| <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation"> |
| <span class="navbar-toggler-icon"></span> |
| </button> |
| |
| <div id="navbar" class="collapse navbar-collapse ms-2"> |
| <ul class="navbar-nav me-auto"><li class="active nav-item"> |
| <a class="nav-link" href="../reference/index.html">Reference</a> |
| </li> |
| <li class="nav-item dropdown"> |
| <a href="#" class="nav-link dropdown-toggle" data-bs-toggle="dropdown" role="button" aria-expanded="false" aria-haspopup="true" id="dropdown-articles">Articles</a> |
| <div class="dropdown-menu" aria-labelledby="dropdown-articles"> |
| <a class="dropdown-item" href="../articles/sparkr-vignettes.html">SparkR - Practical Guide</a> |
| </div> |
| </li> |
| </ul><form class="form-inline my-2 my-lg-0" role="search"> |
| <input type="search" class="form-control me-sm-2" aria-label="Toggle navigation" name="search-input" data-search-index="../search.json" id="search-input" placeholder="Search for" autocomplete="off"></form> |
| |
| <ul class="navbar-nav"><li> |
| <a class="external-link nav-link" id="css-toggle-btn" aria-label="github"> |
| <span class="fas fa fas fa-adjust fa-lg"></span> |
| </a> |
| </li> |
| |
| |
| |
| </ul></div> |
| |
| |
| </div> |
| </nav><div class="container template-reference-topic"> |
| <div class="row"> |
| <main id="main" class="col-md-9"><div class="page-header"> |
| <img src="" class="logo" alt=""><h1>Generalized Linear Models</h1> |
| |
| <div class="d-none name"><code>spark.glm.Rd</code></div> |
| </div> |
| |
| <div class="ref-description section level2"> |
| <p>Fits generalized linear model against a SparkDataFrame. |
| Users can call <code>summary</code> to print a summary of the fitted model, <code>predict</code> to make |
| predictions on new data, and <code>write.ml</code>/<code>read.ml</code> to save/load fitted models.</p> |
| </div> |
| |
| <div class="section level2"> |
| <h2 id="ref-usage">Usage<a class="anchor" aria-label="anchor" href="#ref-usage"></a></h2> |
| <div class="sourceCode"><pre class="sourceCode r"><code><span><span class="fu">spark.glm</span><span class="op">(</span><span class="va">data</span>, <span class="va">formula</span>, <span class="va">...</span><span class="op">)</span></span> |
| <span></span> |
| <span><span class="co"># S4 method for SparkDataFrame,formula</span></span> |
| <span><span class="fu">spark.glm</span><span class="op">(</span></span> |
| <span> <span class="va">data</span>,</span> |
| <span> <span class="va">formula</span>,</span> |
| <span> family <span class="op">=</span> <span class="va">gaussian</span>,</span> |
| <span> tol <span class="op">=</span> <span class="fl">1e-06</span>,</span> |
| <span> maxIter <span class="op">=</span> <span class="fl">25</span>,</span> |
| <span> weightCol <span class="op">=</span> <span class="cn">NULL</span>,</span> |
| <span> regParam <span class="op">=</span> <span class="fl">0</span>,</span> |
| <span> var.power <span class="op">=</span> <span class="fl">0</span>,</span> |
| <span> link.power <span class="op">=</span> <span class="fl">1</span> <span class="op">-</span> <span class="va">var.power</span>,</span> |
| <span> stringIndexerOrderType <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"frequencyDesc"</span>, <span class="st">"frequencyAsc"</span>, <span class="st">"alphabetDesc"</span>,</span> |
| <span> <span class="st">"alphabetAsc"</span><span class="op">)</span>,</span> |
| <span> offsetCol <span class="op">=</span> <span class="cn">NULL</span></span> |
| <span><span class="op">)</span></span> |
| <span></span> |
| <span><span class="co"># S4 method for GeneralizedLinearRegressionModel</span></span> |
| <span><span class="fu"><a href="summary.html">summary</a></span><span class="op">(</span><span class="va">object</span><span class="op">)</span></span> |
| <span></span> |
| <span><span class="co"># S3 method for summary.GeneralizedLinearRegressionModel</span></span> |
| <span><span class="fu"><a href="https://rdrr.io/r/base/print.html" class="external-link">print</a></span><span class="op">(</span><span class="va">x</span>, <span class="va">...</span><span class="op">)</span></span> |
| <span></span> |
| <span><span class="co"># S4 method for GeneralizedLinearRegressionModel</span></span> |
| <span><span class="fu"><a href="predict.html">predict</a></span><span class="op">(</span><span class="va">object</span>, <span class="va">newData</span><span class="op">)</span></span> |
| <span></span> |
| <span><span class="co"># S4 method for GeneralizedLinearRegressionModel,character</span></span> |
| <span><span class="fu"><a href="write.ml.html">write.ml</a></span><span class="op">(</span><span class="va">object</span>, <span class="va">path</span>, overwrite <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div> |
| </div> |
| |
| <div class="section level2"> |
| <h2 id="arguments">Arguments<a class="anchor" aria-label="anchor" href="#arguments"></a></h2> |
| <dl><dt>data</dt> |
| <dd><p>a SparkDataFrame for training.</p></dd> |
| |
| |
| <dt>formula</dt> |
| <dd><p>a symbolic description of the model to be fitted. Currently only a few formula |
| operators are supported, including '~', '.', ':', '+', '-', '*', and '^'.</p></dd> |
| |
| |
| <dt>...</dt> |
| <dd><p>additional arguments passed to the method.</p></dd> |
| |
| |
| <dt>family</dt> |
| <dd><p>a description of the error distribution and link function to be used in the model. |
| This can be a character string naming a family function, a family function or |
| the result of a call to a family function. Refer R family at |
| <a href="https://stat.ethz.ch/R-manual/R-devel/library/stats/html/family.html" class="external-link">https://stat.ethz.ch/R-manual/R-devel/library/stats/html/family.html</a>. |
| Currently these families are supported: <code>binomial</code>, <code>gaussian</code>, |
| <code>Gamma</code>, <code>poisson</code> and <code>tweedie</code>.</p> |
| <p>Note that there are two ways to specify the tweedie family.</p><ul><li><p>Set <code>family = "tweedie"</code> and specify the var.power and link.power;</p></li> |
| <li><p>When package <code>statmod</code> is loaded, the tweedie family is specified |
| using the family definition therein, i.e., <code>tweedie(var.power, link.power)</code>.</p></li> |
| </ul></dd> |
| |
| |
| <dt>tol</dt> |
| <dd><p>positive convergence tolerance of iterations.</p></dd> |
| |
| |
| <dt>maxIter</dt> |
| <dd><p>integer giving the maximal number of IRLS iterations.</p></dd> |
| |
| |
| <dt>weightCol</dt> |
| <dd><p>the weight column name. If this is not set or <code>NULL</code>, we treat all instance |
| weights as 1.0.</p></dd> |
| |
| |
| <dt>regParam</dt> |
| <dd><p>regularization parameter for L2 regularization.</p></dd> |
| |
| |
| <dt>var.power</dt> |
| <dd><p>the power in the variance function of the Tweedie distribution which provides |
| the relationship between the variance and mean of the distribution. Only |
| applicable to the Tweedie family.</p></dd> |
| |
| |
| <dt>link.power</dt> |
| <dd><p>the index in the power link function. Only applicable to the Tweedie family.</p></dd> |
| |
| |
| <dt>stringIndexerOrderType</dt> |
| <dd><p>how to order categories of a string feature column. This is used to |
| decide the base level of a string feature as the last category |
| after ordering is dropped when encoding strings. Supported options |
| are "frequencyDesc", "frequencyAsc", "alphabetDesc", and |
| "alphabetAsc". The default value is "frequencyDesc". When the |
| ordering is set to "alphabetDesc", this drops the same category |
| as R when encoding strings.</p></dd> |
| |
| |
| <dt>offsetCol</dt> |
| <dd><p>the offset column name. If this is not set or empty, we treat all instance |
| offsets as 0.0. The feature specified as offset has a constant coefficient of |
| 1.0.</p></dd> |
| |
| |
| <dt>object</dt> |
| <dd><p>a fitted generalized linear model.</p></dd> |
| |
| |
| <dt>x</dt> |
| <dd><p>summary object of fitted generalized linear model returned by <code>summary</code> function.</p></dd> |
| |
| |
| <dt>newData</dt> |
| <dd><p>a SparkDataFrame for testing.</p></dd> |
| |
| |
| <dt>path</dt> |
| <dd><p>the directory where the model is saved.</p></dd> |
| |
| |
| <dt>overwrite</dt> |
| <dd><p>overwrites or not if the output path already exists. Default is FALSE |
| which means throw exception if the output path exists.</p></dd> |
| |
| </dl></div> |
| <div class="section level2"> |
| <h2 id="value">Value<a class="anchor" aria-label="anchor" href="#value"></a></h2> |
| |
| |
| <p><code>spark.glm</code> returns a fitted generalized linear model.</p> |
| |
| |
| <p><code>summary</code> returns summary information of the fitted model, which is a list. |
| The list of components includes at least the <code>coefficients</code> (coefficients matrix, |
| which includes coefficients, standard error of coefficients, t value and p value),</p> |
| <p></p> |
| <p><code>null.deviance</code> (null/residual degrees of freedom), <code>aic</code> (AIC) |
| and <code>iter</code> (number of iterations IRLS takes). If there are collinear columns in |
| the data, the coefficients matrix only provides coefficients.</p> |
| |
| |
| <p><code>predict</code> returns a SparkDataFrame containing predicted labels in a column named |
| "prediction".</p> |
| </div> |
| <div class="section level2"> |
| <h2 id="note">Note<a class="anchor" aria-label="anchor" href="#note"></a></h2> |
| <p>spark.glm since 2.0.0</p> |
| <p>summary(GeneralizedLinearRegressionModel) since 2.0.0</p> |
| <p>print.summary.GeneralizedLinearRegressionModel since 2.0.0</p> |
| <p>predict(GeneralizedLinearRegressionModel) since 1.5.0</p> |
| <p>write.ml(GeneralizedLinearRegressionModel, character) since 2.0.0</p> |
| </div> |
| <div class="section level2"> |
| <h2 id="see-also">See also<a class="anchor" aria-label="anchor" href="#see-also"></a></h2> |
| <div class="dont-index"><p><a href="glm.html">glm</a>, <a href="read.ml.html">read.ml</a></p></div> |
| </div> |
| |
| <div class="section level2"> |
| <h2 id="ref-examples">Examples<a class="anchor" aria-label="anchor" href="#ref-examples"></a></h2> |
| <div class="sourceCode"><pre class="sourceCode r"><code><span class="r-in"><span><span class="kw">if</span> <span class="op">(</span><span class="cn">FALSE</span><span class="op">)</span> <span class="op">{</span></span></span> |
| <span class="r-in"><span><span class="fu"><a href="sparkR.session.html">sparkR.session</a></span><span class="op">(</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="va">t</span> <span class="op"><-</span> <span class="fu"><a href="as.data.frame.html">as.data.frame</a></span><span class="op">(</span><span class="va">Titanic</span>, stringsAsFactors <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="va">df</span> <span class="op"><-</span> <span class="fu"><a href="createDataFrame.html">createDataFrame</a></span><span class="op">(</span><span class="va">t</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="va">model</span> <span class="op"><-</span> <span class="fu">spark.glm</span><span class="op">(</span><span class="va">df</span>, <span class="va">Freq</span> <span class="op">~</span> <span class="va">Sex</span> <span class="op">+</span> <span class="va">Age</span>, family <span class="op">=</span> <span class="st">"gaussian"</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="fu"><a href="summary.html">summary</a></span><span class="op">(</span><span class="va">model</span><span class="op">)</span></span></span> |
| <span class="r-in"><span></span></span> |
| <span class="r-in"><span><span class="co"># fitted values on training data</span></span></span> |
| <span class="r-in"><span><span class="va">fitted</span> <span class="op"><-</span> <span class="fu"><a href="predict.html">predict</a></span><span class="op">(</span><span class="va">model</span>, <span class="va">df</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="fu"><a href="head.html">head</a></span><span class="op">(</span><span class="fu"><a href="select.html">select</a></span><span class="op">(</span><span class="va">fitted</span>, <span class="st">"Freq"</span>, <span class="st">"prediction"</span><span class="op">)</span><span class="op">)</span></span></span> |
| <span class="r-in"><span></span></span> |
| <span class="r-in"><span><span class="co"># save fitted model to input path</span></span></span> |
| <span class="r-in"><span><span class="va">path</span> <span class="op"><-</span> <span class="st">"path/to/model"</span></span></span> |
| <span class="r-in"><span><span class="fu"><a href="write.ml.html">write.ml</a></span><span class="op">(</span><span class="va">model</span>, <span class="va">path</span><span class="op">)</span></span></span> |
| <span class="r-in"><span></span></span> |
| <span class="r-in"><span><span class="co"># can also read back the saved model and print</span></span></span> |
| <span class="r-in"><span><span class="va">savedModel</span> <span class="op"><-</span> <span class="fu"><a href="read.ml.html">read.ml</a></span><span class="op">(</span><span class="va">path</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="fu"><a href="summary.html">summary</a></span><span class="op">(</span><span class="va">savedModel</span><span class="op">)</span></span></span> |
| <span class="r-in"><span></span></span> |
| <span class="r-in"><span><span class="co"># note that the default string encoding is different from R's glm</span></span></span> |
| <span class="r-in"><span><span class="va">model2</span> <span class="op"><-</span> <span class="fu"><a href="glm.html">glm</a></span><span class="op">(</span><span class="va">Freq</span> <span class="op">~</span> <span class="va">Sex</span> <span class="op">+</span> <span class="va">Age</span>, family <span class="op">=</span> <span class="st">"gaussian"</span>, data <span class="op">=</span> <span class="va">t</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="fu"><a href="summary.html">summary</a></span><span class="op">(</span><span class="va">model2</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="co"># use stringIndexerOrderType = "alphabetDesc" to force string encoding</span></span></span> |
| <span class="r-in"><span><span class="co"># to be consistent with R</span></span></span> |
| <span class="r-in"><span><span class="va">model3</span> <span class="op"><-</span> <span class="fu">spark.glm</span><span class="op">(</span><span class="va">df</span>, <span class="va">Freq</span> <span class="op">~</span> <span class="va">Sex</span> <span class="op">+</span> <span class="va">Age</span>, family <span class="op">=</span> <span class="st">"gaussian"</span>,</span></span> |
| <span class="r-in"><span> stringIndexerOrderType <span class="op">=</span> <span class="st">"alphabetDesc"</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="fu"><a href="summary.html">summary</a></span><span class="op">(</span><span class="va">model3</span><span class="op">)</span></span></span> |
| <span class="r-in"><span></span></span> |
| <span class="r-in"><span><span class="co"># fit tweedie model</span></span></span> |
| <span class="r-in"><span><span class="va">model</span> <span class="op"><-</span> <span class="fu">spark.glm</span><span class="op">(</span><span class="va">df</span>, <span class="va">Freq</span> <span class="op">~</span> <span class="va">Sex</span> <span class="op">+</span> <span class="va">Age</span>, family <span class="op">=</span> <span class="st">"tweedie"</span>,</span></span> |
| <span class="r-in"><span> var.power <span class="op">=</span> <span class="fl">1.2</span>, link.power <span class="op">=</span> <span class="fl">0</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="fu"><a href="summary.html">summary</a></span><span class="op">(</span><span class="va">model</span><span class="op">)</span></span></span> |
| <span class="r-in"><span></span></span> |
| <span class="r-in"><span><span class="co"># use the tweedie family from statmod</span></span></span> |
| <span class="r-in"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="va">statmod</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="va">model</span> <span class="op"><-</span> <span class="fu">spark.glm</span><span class="op">(</span><span class="va">df</span>, <span class="va">Freq</span> <span class="op">~</span> <span class="va">Sex</span> <span class="op">+</span> <span class="va">Age</span>, family <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/pkg/statmod/man/tweedie.html" class="external-link">tweedie</a></span><span class="op">(</span><span class="fl">1.2</span>, <span class="fl">0</span><span class="op">)</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="fu"><a href="summary.html">summary</a></span><span class="op">(</span><span class="va">model</span><span class="op">)</span></span></span> |
| <span class="r-in"><span><span class="op">}</span></span></span> |
| </code></pre></div> |
| </div> |
| </main><aside class="col-md-3"><nav id="toc"><h2>On this page</h2> |
| </nav></aside></div> |
| |
| |
| <footer><div class="copyright"> |
| <p></p><p>Developed by <a href="https://www.apache.org/" class="external-link"> The Apache Software Foundation</a>.</p> |
| </div> |
| |
| <div class="pkgdown"> |
| <p></p><p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.9.</p> |
| <p class="preferably">Using <a href="https://preferably.amirmasoudabdol.name/?source=footer" class="external-link">preferably</a> template.</p> |
| </div> |
| |
| </footer></div> |
| |
| |
| |
| |
| |
| </body></html> |
| |