| commit | 50e766ee82074bcd9f58550df141b01e02174dbc | [log] [tgz] |
|---|---|---|
| author | Dongjoon Hyun <dongjoon@apache.org> | Sat May 17 08:02:57 2025 -0700 |
| committer | Dongjoon Hyun <dongjoon@apache.org> | Sat May 17 08:02:57 2025 -0700 |
| tree | def78adff0a0278cf7c3916a4403fbfaee27466a | |
| parent | 85f17fbe5290db5fda90d7d4324381833d0eefa8 [diff] |
Preparing development version 0.2.1-SNAPSHOT
Apache Spark⢠K8s Operator is a subproject of Apache Spark and aims to extend K8s resource manager to manage Apache Spark applications via Operator Pattern.
Apache Spark provides a Helm Chart.
$ helm repo add spark-kubernetes-operator https://apache.github.io/spark-kubernetes-operator $ helm repo update $ helm install spark-kubernetes-operator spark-kubernetes-operator/spark-kubernetes-operator
Spark K8s Operator is built using Gradle. To build, run:
$ ./gradlew build -x test
$ ./gradlew build
$ ./gradlew buildDockerImage
$ ./gradlew spark-operator-api:relocateGeneratedCRD $ helm install spark -f build-tools/helm/spark-kubernetes-operator/values.yaml build-tools/helm/spark-kubernetes-operator/
$ kubectl apply -f examples/pi.yaml $ kubectl get sparkapp NAME CURRENT STATE AGE pi ResourceReleased 4m10s $ kubectl delete sparkapp/pi
$ kubectl apply -f examples/prod-cluster-with-three-workers.yaml $ kubectl get sparkcluster NAME CURRENT STATE AGE prod RunningHealthy 10s $ kubectl port-forward prod-master-0 6066 & $ ./examples/submit-pi-to-prod.sh { "action" : "CreateSubmissionResponse", "message" : "Driver successfully submitted as driver-20240821181327-0000", "serverSparkVersion" : "4.0.0-preview2", "submissionId" : "driver-20240821181327-0000", "success" : true } $ curl http://localhost:6066/v1/submissions/status/driver-20240821181327-0000/ { "action" : "SubmissionStatusResponse", "driverState" : "FINISHED", "serverSparkVersion" : "4.0.0-preview2", "submissionId" : "driver-20240821181327-0000", "success" : true, "workerHostPort" : "10.1.5.188:42099", "workerId" : "worker-20240821181236-10.1.5.188-42099" } $ kubectl delete sparkcluster prod sparkcluster.spark.apache.org "prod" deleted
If you have not yet done so, follow YuniKorn docs to install the latest version:
$ helm repo add yunikorn https://apache.github.io/yunikorn-release $ helm repo update $ helm install yunikorn yunikorn/yunikorn --namespace yunikorn --version 1.6.3 --create-namespace --set embedAdmissionController=false
Submit a Spark app to YuniKorn enabled cluster:
$ kubectl apply -f examples/pi-on-yunikorn.yaml $ kubectl describe pod pi-on-yunikorn-0-driver ... Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal Scheduling 14s yunikorn default/pi-on-yunikorn-0-driver is queued and waiting for allocation Normal Scheduled 14s yunikorn Successfully assigned default/pi-on-yunikorn-0-driver to node docker-desktop Normal PodBindSuccessful 14s yunikorn Pod default/pi-on-yunikorn-0-driver is successfully bound to node docker-desktop Normal TaskCompleted 6s yunikorn Task default/pi-on-yunikorn-0-driver is completed Normal Pulled 13s kubelet Container image "apache/spark:4.0.0-preview2" already present on machine Normal Created 13s kubelet Created container spark-kubernetes-driver Normal Started 13s kubelet Started container spark-kubernetes-driver $ kubectl delete sparkapp pi-on-yunikorn sparkapplication.spark.apache.org "pi-on-yunikorn" deleted
As of now, you can try spark-kubernetes-operator nightly version in the following way.
$ helm install spark-kubernetes-operator \ https://nightlies.apache.org/spark/charts/spark-kubernetes-operator-0.2.1-SNAPSHOT.tgz
Check the existing Spark applications and clusters. If exists, delete them.
$ kubectl get sparkapp No resources found in default namespace. $ kubectl get sparkcluster No resources found in default namespace.
Remove HelmChart and CRDs.
$ helm uninstall spark-kubernetes-operator $ kubectl delete crd sparkapplications.spark.apache.org $ kubectl delete crd sparkclusters.spark.apache.org
In case of nightly builds, remove the snapshot image.
$ docker rmi apache/spark-kubernetes-operator:main-snapshot
Please review the Contribution to Spark guide for information on how to get started contributing to the project.