blob: 822fb5c164e36aab5ef70016124cf2c2de64166c [file] [log] [blame]
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package singa;
option java_package = "org.apache.singa.proto";
/// \file layer.proto is adapted from [Caffe](https://github.com/BVLC/caffe/)'s
/// proto file with commit id c419f8517b1e1b3d7a07fe212fc6c90a70b519ea. We
/// use caffe's protocol for configuring layer hyper-parameters for easy
/// transporting Caffe model into SINGA. Specifically, we do the following
/// changes:
/// 1. we rename LayerParameter to LayerConf to differentiate model parameters
/// 2. we rename xxxParameter to xxxConf for fields of LayerParameter
/// 3. we comment out some fields (using /*...*/) not used in SINGA layer but
/// reserve their tags.
/// 4. we add new fields (commented like 'singa field..') to support our own
/// functionalities.
/// TODO(wangwei) write a proto converter to automatically load caffe models
/// using Python (or C++/Java).
// Specifies the shape (dimensions) of a Blob.
message BlobShape {
repeated int64 dim = 1 [packed = true];
}
message BlobProto {
optional BlobShape shape = 7;
repeated float data = 5 [packed = true];
repeated float diff = 6 [packed = true];
repeated double double_data = 8 [packed = true];
repeated double double_diff = 9 [packed = true];
// 4D dimensions -- deprecated. Use "shape" instead.
optional int32 num = 1 [default = 0];
optional int32 channels = 2 [default = 0];
optional int32 height = 3 [default = 0];
optional int32 width = 4 [default = 0];
}
message FillerConf {
// The filler type, case insensitive
optional string type = 1 [default = 'constant'];
optional float value = 2 [default = 0]; // the value in constant filler
optional float min = 3 [default = 0]; // the min value in uniform filler
optional float max = 4 [default = 1]; // the max value in uniform filler
optional float mean = 5 [default = 0]; // the mean value in Gaussian filler
optional float std = 6 [default = 1]; // the std value in Gaussian filler
// The expected number of non-zero output weights for a given input in
// Gaussian filler -- the default -1 means don't perform sparsification.
/* optional int32 sparse = 7 [default = -1]; */
// Normalize the filler variance by fan_in, fan_out, or their average.
// Applies to 'xavier' and 'msra' fillers.
enum VarianceNorm {
FAN_IN = 0;
FAN_OUT = 1;
AVERAGE = 2;
}
optional VarianceNorm variance_norm = 8 [default = FAN_IN];
}
/// SINGA message
message OptimizerConf {
// case insensitive
optional string type = 1 [default = "sgd"];
// used by RMSprop and Adadelta
optional float rho = 2 [default = 0.95];
// used by Adam and AdamMax
optional float beta_1 = 3 [default = 0.9];
optional float beta_2 = 4 [default = 0.999];
// used by vanilla sgd and nesterov
optional float momentum = 5 [default = 0.9];
// delta is used to avoid dividing zero
optional float delta = 6 [default = 1e-8];
// global regularizer lower priority than ParamSpec regularizer
optional RegularizerConf regularizer = 10;
// global constraint lower priority than ParamSpec constraint
optional ConstraintConf constraint = 11;
}
message ConstraintConf {
// case insensitive to limit the parameter value/gradient scale
optional string type = 1 [default = "l2"];
// e.g., the threshold for limiting the parameter scale.
optional float threshold = 2;
}
/// SINGA message
message RegularizerConf {
// case insensitive to regularize the parameters, e.g., L2.
optional string type = 1 [default = "l2"];
// e.g., the weight decay for L2 regularizer
optional float coefficient = 2;
}
// Specifies training parameters (multipliers on global learning constants,
// and the name and other settings used for weight sharing).
message ParamSpec {
// The names of the parameter blobs -- useful for sharing parameters among
// layers, but never required otherwise. To share a parameter between two
// layers, give it a (non-empty) name.
optional string name = 1;
// Whether to require shared weights to have the same shape, or just the same
// count -- defaults to STRICT if unspecified.
/*
optional DimCheckMode share_mode = 2;
enum DimCheckMode {
// STRICT (default) requires that num, channels, height, width each match.
STRICT = 0;
// PERMISSIVE requires only the count (num*channels*height*width) to match.
PERMISSIVE = 1;
}
*/
// The multiplier on the global learning rate for this parameter.
optional float lr_mult = 3 [default = 1.0];
// The multiplier on the global weight decay for this parameter.
optional float decay_mult = 4 [default = 1.0];
// SINGA uses this filed internally. Users just configure the fillers in
// Layer specific conf message as caffe (style).
optional FillerConf filler = 20;
optional ConstraintConf constraint = 21;
optional RegularizerConf regularizer = 22;
}
enum Phase {
kTrain = 4;
kEval = 8;
}
// NOTE
// Update the next available ID when you add a new LayerConf field.
//
// LayerConf next available layer-specific ID: 139 (last added: tile_param)
message LayerConf {
optional string name = 1; // the layer name
optional string type = 2; // the layer type
/* repeated string bottom = 3; // the name of each bottom blob */
/* repeated string top = 4; // the name of each top blob */
// The train / test phase for computation.
// optional Phase phase = 10;
// The amount of weight to assign each top blob in the objective.
// Each layer assigns a default value, usually of either 0 or 1,
// to each top blob.
/* repeated float loss_weight = 5; */
// Specifies training parameters (multipliers on global learning constants,
// and the name and other settings used for weight sharing).
repeated ParamSpec param = 6;
// The blobs containing the numeric parameters of the layer.
repeated BlobProto blobs = 7;
// Specifies on which bottoms the backpropagation should be skipped.
// The size must be either 0 or equal to the number of bottoms.
/* repeated bool propagate_down = 11; */
// Rules controlling whether and when a layer is included in the network,
// based on the current NetState. You may specify a non-zero number of rules
// to include OR exclude, but not both. If no include or exclude rules are
// specified, the layer is always included. If the current NetState meets
// ANY (i.e., one or more) of the specified rules, the layer is
// included/excluded.
/* repeated NetStateRule include = 8; */
/* repeated NetStateRule exclude = 9; */
// Confs for data pre-processing.
/* optional TransformationConf transform_param = 100; */
// Confs shared by loss layers.
/* optional LossConf loss_param = 101; */
// Layer type-specific parameters.
//
// Note: certain layers may have more than one computational engine
// for their implementation. These layers include an Engine type and
// engine parameter for selecting the implementation.
// The default for the engine is set by the ENGINE switch at compile-time.
//optional AccuracyConf accuracy_conf = 102;
optional ArgMaxConf argmax_conf = 103;
optional ConcatConf concat_conf = 104;
optional ContrastiveLossConf contrastive_loss_conf = 105;
optional ConvolutionConf convolution_conf = 106;
optional RNNConf rnn_conf = 140;
// optional DataConf data_conf = 107;
optional DropoutConf dropout_conf = 108;
// optional DummyDataConf dummy_data_conf = 109;
optional EltwiseConf eltwise_conf = 110;
optional EmbedConf embed_conf = 137;
optional ExpConf exp_conf = 111;
optional FlattenConf flatten_conf = 135;
// optional HDF5DataConf hdf5_data_conf = 112;
// optional HDF5OutputConf hdf5_output_conf = 113;
optional HingeLossConf hinge_loss_conf = 114;
// optional ImageDataConf image_data_conf = 115;
optional InfogainLossConf infogain_loss_conf = 116;
// use dense_conf to replace this inner_product_conf
// optional InnerProductConf inner_product_conf = 117;
optional LogConf log_conf = 134;
optional LRNConf lrn_conf = 118;
// optional MemoryDataConf memory_data_conf = 119;
optional MVNConf mvn_conf = 120;
optional PoolingConf pooling_conf = 121;
optional PowerConf power_conf = 122;
optional PReLUConf prelu_conf = 131;
// optional PythonConf python_conf = 130;
optional ReductionConf reduction_conf = 136;
optional ReLUConf relu_conf = 123;
optional ReshapeConf reshape_conf = 133;
optional SigmoidConf sigmoid_conf = 124;
optional SoftmaxConf softmax_conf = 125;
optional SPPConf spp_conf = 132;
optional SliceConf slice_conf = 126;
optional TanHConf tanh_conf = 127;
optional ThresholdConf threshold_conf = 128;
optional TileConf tile_conf = 138;
//optional WindowDataConf window_data_conf = 129;
// Used in SINGA
optional DenseConf dense_conf = 117;
optional MetricConf metric_conf = 200;
optional BatchNormConf batchnorm_conf = 202;
optional SplitConf split_conf = 203;
}
// Message that stores hyper-parameters used to apply transformation
// to the data layer's data
/*
message TransformationConf {
// For data pre-processing, we can do simple scaling and subtracting the
// data mean, if provided. Note that the mean subtraction is always carried
// out before scaling.
optional float scale = 1 [default = 1];
// Specify if we want to randomly mirror data.
optional bool mirror = 2 [default = false];
// Specify if we would like to randomly crop an image.
optional uint32 crop_size = 3 [default = 0];
// mean_file and mean_value cannot be specified at the same time
optional string mean_file = 4;
// if specified can be repeated once (would substract it from all the channels)
// or can be repeated the same number of times as channels
// (would subtract them from the corresponding channel)
repeated float mean_value = 5;
// Force the decoded image to have 3 color channels.
optional bool force_color = 6 [default = false];
// Force the decoded image to have 1 color channels.
optional bool force_gray = 7 [default = false];
}
*/
// Message that stores hyper-parameters shared by loss layers
message LossConf {
// If specified, ignore instances with the given label.
optional int32 ignore_label = 1;
// If true, normalize each batch across all instances (including spatial
// dimesions, but not ignored instances); else, divide by batch size only.
optional bool normalize = 2 [default = true];
}
message MetricConf {
// When computing accuracy, count as correct by comparing the true label to
// the top k scoring classes. By default, only compare to the top scoring
// class (i.e. argmax).
optional uint32 top_k = 1 [default = 1];
// The "label" axis of the prediction blob, whose argmax corresponds to the
// predicted label -- may be negative to index from the end (e.g., -1 for the
// last axis). For example, if axis == 1 and the predictions are
// (N x C x H x W), the label blob is expected to contain N*H*W ground truth
// labels with integer values in {0, 1, ..., C-1}.
optional int32 axis = 2 [default = 1];
// If specified, ignore instances with the given label.
optional int32 ignore_label = 3;
}
// Messages that store hyper-parameters used by individual layer types follow, in
// alphabetical order.
message ArgMaxConf {
// If true produce pairs (argmax, maxval)
optional bool out_max_val = 1 [default = false];
optional uint32 top_k = 2 [default = 1];
// The axis along which to maximise -- may be negative to index from the
// end (e.g., -1 for the last axis).
// By default ArgMaxLayer maximizes over the flattened trailing dimensions
// for each index of the first / num dimension.
optional int32 axis = 3;
}
message ConcatConf {
// The axis along which to concatenate -- may be negative to index from the
// end (e.g., -1 for the last axis). Other axes must have the
// same dimension for all the bottom blobs.
// By default, ConcatLayer concatenates blobs along the "channels" axis (1).
optional int32 axis = 2 [default = 1];
// DEPRECATED: alias for "axis" -- does not support negative indexing.
optional uint32 concat_dim = 1 [default = 1];
}
message ContrastiveLossConf {
// margin for dissimilar pair
optional float margin = 1 [default = 1.0];
// The first implementation of this cost did not exactly match the cost of
// Hadsell et al 2006 -- using (margin - d^2) instead of (margin - d)^2.
// legacy_version = false (the default) uses (margin - d)^2 as proposed in the
// Hadsell paper. New models should probably use this version.
// legacy_version = true uses (margin - d^2). This is kept to support /
// reproduce existing models and results
optional bool legacy_version = 2 [default = false];
}
message ConvolutionConf {
optional uint32 num_output = 1; // The number of outputs for the layer
optional bool bias_term = 2 [default = true]; // whether to have bias terms
// Pad, kernel size, and stride are all given as a single value for equal
// dimensions in all spatial dimensions, or once per spatial dimension.
repeated uint32 pad = 3; // The padding size; defaults to 0
repeated uint32 kernel_size = 4; // The kernel size
repeated uint32 stride = 6; // The stride; defaults to 1
// For 2D convolution only, the *_h and *_w versions may also be used to
// specify both spatial dimensions.
optional uint32 pad_h = 9 [default = 0]; // The padding height (2D only)
optional uint32 pad_w = 10 [default = 0]; // The padding width (2D only)
optional uint32 kernel_h = 11; // The kernel height (2D only)
optional uint32 kernel_w = 12; // The kernel width (2D only)
optional uint32 stride_h = 13; // The stride height (2D only)
optional uint32 stride_w = 14; // The stride width (2D only)
// SINGA: not supported.
// optional uint32 group = 5 [default = 1]; // The group size for group conv
optional FillerConf weight_filler = 7; // The filler for the weight
optional FillerConf bias_filler = 8; // The filler for the bias
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
optional Engine engine = 15 [default = DEFAULT];
// The axis to interpret as "channels" when performing convolution.
// Preceding dimensions are treated as independent inputs;
// succeeding dimensions are treated as "spatial".
// With (N, C, H, W) inputs, and axis == 1 (the default), we perform
// N independent 2D convolutions, sliding C-channel (or (C/g)-channels, for
// groups g>1) filters across the spatial axes (H, W) of the input.
// With (N, C, D, H, W) inputs, and axis == 1, we perform
// N independent 3D convolutions, sliding (C/g)-channels
// filters across the spatial axes (D, H, W) of the input.
// SINGA: not supported;
// optional int32 axis = 16 [default = 1];
// Whether to force use of the general ND convolution, even if a specific
// implementation for blobs of the appropriate number of spatial dimensions
// is available. (Currently, there is only a 2D-specific convolution
// implementation; for input blobs with num_axes != 2, this option is
// ignored and the ND implementation will be used.)
// SINGA: not supported;
// optional bool force_nd_im2col = 17 [default = false];
// SINGA: add by xiangrui
// cudnn workspace size in MB
optional int32 workspace_byte_limit = 50 [default = 1024];
// cudnn algorithm preference
// options: "fastest", "limited_workspace", "no_workspace"
optional string prefer = 51 [default = "fastest"];
}
message RNNConf {
optional uint32 hidden_size = 1; // The hidden feature size
optional uint32 num_stacks = 2; // The number of stacked RNN layers
optional float dropout = 3 [default = 0];
optional bool remember_state = 4 [default = false];
// cudnn inputmode
// options: "linear", "skip"
optional string input_mode = 7 [default = "linear"];
// cudnn direction
// options: "unidirectional", "bidirectional"
optional string direction = 8 [default = "unidirectional"];
// cudnn RNN mode
// options: "relu", "tanh", "lstm", "gru"
optional string rnn_mode = 9 [default = "relu"];
}
/*
message DataConf {
enum DB {
LEVELDB = 0;
LMDB = 1;
}
// Specify the data source.
optional string source = 1;
// Specify the batch size.
optional uint32 batch_size = 4;
// The rand_skip variable is for the data layer to skip a few data points
// to avoid all asynchronous sgd clients to start at the same point. The skip
// point would be set as rand_skip * rand(0,1). Note that rand_skip should not
// be larger than the number of keys in the database.
// DEPRECATED. Each solver accesses a different subset of the database.
optional uint32 rand_skip = 7 [default = 0];
optional DB backend = 8 [default = LEVELDB];
// DEPRECATED. See TransformationConf. For data pre-processing, we can do
// simple scaling and subtracting the data mean, if provided. Note that the
// mean subtraction is always carried out before scaling.
optional float scale = 2 [default = 1];
optional string mean_file = 3;
// DEPRECATED. See TransformationConf. Specify if we would like to randomly
// crop an image.
optional uint32 crop_size = 5 [default = 0];
// DEPRECATED. See TransformationConf. Specify if we want to randomly mirror
// data.
optional bool mirror = 6 [default = false];
// Force the encoded image to have 3 color channels
optional bool force_encoded_color = 9 [default = false];
// Prefetch queue (Number of batches to prefetch to host memory, increase if
// data access bandwidth varies).
optional uint32 prefetch = 10 [default = 4];
}
*/
message DropoutConf {
optional float dropout_ratio = 1 [default = 0.5]; // dropout ratio
}
// DummyDataLayer fills any number of arbitrarily shaped blobs with random
// (or constant) data generated by "Fillers" (see "message FillerConf").
message DummyDataConf {
// This layer produces N >= 1 top blobs. DummyDataConf must specify 1 or N
// shape fields, and 0, 1 or N data_fillers.
//
// If 0 data_fillers are specified, ConstantFiller with a value of 0 is used.
// If 1 data_filler is specified, it is applied to all top blobs. If N are
// specified, the ith is applied to the ith top blob.
repeated FillerConf data_filler = 1;
repeated BlobShape shape = 6;
// 4D dimensions -- deprecated. Use "shape" instead.
repeated uint32 num = 2;
repeated uint32 channels = 3;
repeated uint32 height = 4;
repeated uint32 width = 5;
}
message EltwiseConf {
enum EltwiseOp {
PROD = 0;
SUM = 1;
MAX = 2;
}
optional EltwiseOp operation = 1 [default = SUM]; // element-wise operation
repeated float coeff = 2; // blob-wise coefficient for SUM operation
// Whether to use an asymptotically slower (for >2 inputs) but stabler method
// of computing the gradient for the PROD operation. (No effect for SUM op.)
optional bool stable_prod_grad = 3 [default = true];
}
// Message that stores hyper-parameters used by EmbedLayer
message EmbedConf {
optional uint32 num_output = 1; // The number of outputs for the layer
// The input is given as integers to be interpreted as one-hot
// vector indices with dimension num_input. Hence num_input should be
// 1 greater than the maximum possible input value.
optional uint32 input_dim = 2;
optional bool bias_term = 3 [default = true]; // Whether to use a bias term
optional FillerConf weight_filler = 4; // The filler for the weight
optional FillerConf bias_filler = 5; // The filler for the bias
}
// Message that stores hyper-parameters used by ExpLayer
message ExpConf {
// ExpLayer computes outputs y = base ^ (shift + scale * x), for base > 0.
// Or if base is set to the default (-1), base is set to e,
// so y = exp(shift + scale * x).
optional float base = 1 [default = -1.0];
optional float scale = 2 [default = 1.0];
optional float shift = 3 [default = 0.0];
}
/// Message that stores hyper-parameters used by FlattenLayer
message FlattenConf {
// The first axis to flatten: all preceding axes are retained in the output.
// May be negative to index from the end (e.g., -1 for the last axis).
optional int32 axis = 1 [default = 1];
// The last axis to flatten: all following axes are retained in the output.
// May be negative to index from the end (e.g., the default -1 for the last
// axis).
optional int32 end_axis = 2 [default = -1];
}
/*
// Message that stores hyper-parameters used by HDF5DataLayer
message HDF5DataConf {
// Specify the data source.
optional string source = 1;
// Specify the batch size.
optional uint32 batch_size = 2;
// Specify whether to shuffle the data.
// If shuffle == true, the ordering of the HDF5 files is shuffled,
// and the ordering of data within any given HDF5 file is shuffled,
// but data between different files are not interleaved; all of a file's
// data are output (in a random order) before moving onto another file.
optional bool shuffle = 3 [default = false];
}
message HDF5OutputConf {
optional string file_name = 1;
}
*/
message HingeLossConf {
enum Norm {
L1 = 1;
L2 = 2;
}
// Specify the Norm to use L1 or L2
optional Norm norm = 1 [default = L1];
}
/*
message ImageDataConf {
// Specify the data source.
optional string source = 1;
// Specify the batch size.
optional uint32 batch_size = 4 [default = 1];
// The rand_skip variable is for the data layer to skip a few data points
// to avoid all asynchronous sgd clients to start at the same point. The skip
// point would be set as rand_skip * rand(0,1). Note that rand_skip should not
// be larger than the number of keys in the database.
optional uint32 rand_skip = 7 [default = 0];
// Whether or not ImageLayer should shuffle the list of files at every epoch.
optional bool shuffle = 8 [default = false];
// It will also resize images if new_height or new_width are not zero.
optional uint32 new_height = 9 [default = 0];
optional uint32 new_width = 10 [default = 0];
// Specify if the images are color or gray
optional bool is_color = 11 [default = true];
// DEPRECATED. See TransformationConf. For data pre-processing, we can do
// simple scaling and subtracting the data mean, if provided. Note that the
// mean subtraction is always carried out before scaling.
optional float scale = 2 [default = 1];
optional string mean_file = 3;
// DEPRECATED. See TransformationConf. Specify if we would like to randomly
// crop an image.
optional uint32 crop_size = 5 [default = 0];
// DEPRECATED. See TransformationConf. Specify if we want to randomly mirror
// data.
optional bool mirror = 6 [default = false];
optional string root_folder = 12 [default = ""];
}
*/
message InfogainLossConf {
// Specify the infogain matrix source.
optional string source = 1;
}
message InnerProductConf {
optional uint32 num_output = 1; // The number of outputs for the layer
optional bool bias_term = 2 [default = true]; // whether to have bias terms
optional FillerConf weight_filler = 3; // The filler for the weight
optional FillerConf bias_filler = 4; // The filler for the bias
// The first axis to be lumped into a single inner product computation;
// all preceding axes are retained in the output.
// May be negative to index from the end (e.g., -1 for the last axis).
optional int32 axis = 5 [default = 1];
}
message DenseConf {
optional uint32 num_output = 1; // The number of outputs for the layer
optional bool bias_term = 2 [default = true]; // whether to have bias terms
optional FillerConf weight_filler = 3; // The filler for the weight
optional FillerConf bias_filler = 4; // The filler for the bias
// The first axis to be lumped into a single inner product computation;
// all preceding axes are retained in the output.
// May be negative to index from the end (e.g., -1 for the last axis).
optional int32 axis = 5 [default = 1];
optional bool transpose = 21 [default = false]; // whether transpose or not
}
// Message that stores hyper-parameters used by LogLayer
message LogConf {
// LogLayer computes outputs y = log_base(shift + scale * x), for base > 0.
// Or if base is set to the default (-1), base is set to e,
// so y = ln(shift + scale * x) = log_e(shift + scale * x)
optional float base = 1 [default = -1.0];
optional float scale = 2 [default = 1.0];
optional float shift = 3 [default = 0.0];
}
// Message that stores hyper-parameters used by LRNLayer
message LRNConf {
optional uint32 local_size = 1 [default = 5];
optional float alpha = 2 [default = 1.];
optional float beta = 3 [default = 0.75];
enum NormRegion {
ACROSS_CHANNELS = 0;
WITHIN_CHANNEL = 1;
}
optional NormRegion norm_region = 4 [default = ACROSS_CHANNELS];
optional float k = 5 [default = 1.];
}
message MemoryDataConf {
optional uint32 batch_size = 1;
optional uint32 channels = 2;
optional uint32 height = 3;
optional uint32 width = 4;
}
message MVNConf {
// This parameter can be set to false to normalize mean only
optional bool normalize_variance = 1 [default = true];
// This parameter can be set to true to perform DNN-like MVN
optional bool across_channels = 2 [default = false];
// Epsilon for not dividing by zero while normalizing variance
optional float eps = 3 [default = 1e-9];
}
message PoolingConf {
enum PoolMethod {
MAX = 0;
AVE = 1;
STOCHASTIC = 2;
}
optional PoolMethod pool = 1 [default = MAX]; // The pooling method
// Pad, kernel size, and stride are all given as a single value for equal
// dimensions in height and width or as Y, X pairs.
optional uint32 pad = 4 [default = 0]; // The padding size (equal in Y, X)
optional uint32 pad_h = 9 [default = 0]; // The padding height
optional uint32 pad_w = 10 [default = 0]; // The padding width
optional uint32 kernel_size = 2; // The kernel size (square)
optional uint32 kernel_h = 5; // The kernel height
optional uint32 kernel_w = 6; // The kernel width
optional uint32 stride = 3 [default = 1]; // The stride (equal in Y, X)
optional uint32 stride_h = 7; // The stride height
optional uint32 stride_w = 8; // The stride width
/*
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
optional Engine engine = 11 [default = DEFAULT];
*/
// If global_pooling then it will pool over the size of the bottom by doing
// kernel_h = bottom->height and kernel_w = bottom->width
optional bool global_pooling = 12 [default = false];
// whether to propagate nan
optional bool nan_prop = 53 [default = false];
// Added by xiangrui, 18 Oct, 2016
optional bool ceil = 60 [default = false];
}
message PowerConf {
// PowerLayer computes outputs y = (shift + scale * x) ^ power.
optional float power = 1 [default = 1.0];
optional float scale = 2 [default = 1.0];
optional float shift = 3 [default = 0.0];
}
/*
message PythonConf {
optional string module = 1;
optional string layer = 2;
// This value is set to the attribute `param_str` of the `PythonLayer` object
// in Python before calling the `setup()` method. This could be a number,
// string, dictionary in Python dict format, JSON, etc. You may parse this
// string in `setup` method and use it in `forward` and `backward`.
optional string param_str = 3 [default = ''];
// Whether this PythonLayer is shared among worker solvers during data parallelism.
// If true, each worker solver sequentially run forward from this layer.
// This value should be set true if you are using it as a data layer.
optional bool share_in_parallel = 4 [default = false];
}
*/
// Message that stores hyper-parameters used by ReductionLayer
message ReductionConf {
enum ReductionOp {
SUM = 1;
ASUM = 2;
SUMSQ = 3;
MEAN = 4;
}
optional ReductionOp operation = 1 [default = SUM]; // reduction operation
// The first axis to reduce to a scalar -- may be negative to index from the
// end (e.g., -1 for the last axis).
// (Currently, only reduction along ALL "tail" axes is supported; reduction
// of axis M through N, where N < num_axes - 1, is unsupported.)
// Suppose we have an n-axis bottom Blob with shape:
// (d0, d1, d2, ..., d(m-1), dm, d(m+1), ..., d(n-1)).
// If axis == m, the output Blob will have shape
// (d0, d1, d2, ..., d(m-1)),
// and the ReductionOp operation is performed (d0 * d1 * d2 * ... * d(m-1))
// times, each including (dm * d(m+1) * ... * d(n-1)) individual data.
// If axis == 0 (the default), the output Blob always has the empty shape
// (count 1), performing reduction across the entire input --
// often useful for creating new loss functions.
optional int32 axis = 2 [default = 0];
optional float coeff = 3 [default = 1.0]; // coefficient for output
}
// Message that stores hyper-parameters used by ReLULayer
message ReLUConf {
// Allow non-zero slope for negative inputs to speed up optimization
// Described in:
// Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities
// improve neural network acoustic models. In ICML Workshop on Deep Learning
// for Audio, Speech, and Language Processing.
optional float negative_slope = 1 [default = 0];
/*
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
optional Engine engine = 2 [default = DEFAULT];
*/
}
message ReshapeConf {
// Specify the output dimensions. If some of the dimensions are set to 0,
// the corresponding dimension from the bottom layer is used (unchanged).
// Exactly one dimension may be set to -1, in which case its value is
// inferred from the count of the bottom blob and the remaining dimensions.
// For example, suppose we want to reshape a 2D blob "input" with shape 2 x 8:
//
// layer {
// type: "Reshape" bottom: "input" top: "output"
// reshape_param { ... }
// }
//
// If "input" is 2D with shape 2 x 8, then the following reshape_param
// specifications are all equivalent, producing a 3D blob "output" with shape
// 2 x 2 x 4:
//
// reshape_param { shape { dim: 2 dim: 2 dim: 4 } }
// reshape_param { shape { dim: 0 dim: 2 dim: 4 } }
// reshape_param { shape { dim: 0 dim: 2 dim: -1 } }
// reshape_param { shape { dim: -1 dim: 0 dim: 2 } }
//
optional BlobShape shape = 1;
// axis and num_axes control the portion of the bottom blob's shape that are
// replaced by (included in) the reshape. By default (axis == 0 and
// num_axes == -1), the entire bottom blob shape is included in the reshape,
// and hence the shape field must specify the entire output shape.
//
// axis may be non-zero to retain some portion of the beginning of the input
// shape (and may be negative to index from the end; e.g., -1 to begin the
// reshape after the last axis, including nothing in the reshape,
// -2 to include only the last axis, etc.).
//
// For example, suppose "input" is a 2D blob with shape 2 x 8.
// Then the following ReshapeLayer specifications are all equivalent,
// producing a blob "output" with shape 2 x 2 x 4:
//
// reshape_param { shape { dim: 2 dim: 2 dim: 4 } }
// reshape_param { shape { dim: 2 dim: 4 } axis: 1 }
// reshape_param { shape { dim: 2 dim: 4 } axis: -3 }
//
// num_axes specifies the extent of the reshape.
// If num_axes >= 0 (and axis >= 0), the reshape will be performed only on
// input axes in the range [axis, axis+num_axes].
// num_axes may also be -1, the default, to include all remaining axes
// (starting from axis).
//
// For example, suppose "input" is a 2D blob with shape 2 x 8.
// Then the following ReshapeLayer specifications are equivalent,
// producing a blob "output" with shape 1 x 2 x 8.
//
// reshape_param { shape { dim: 1 dim: 2 dim: 8 } }
// reshape_param { shape { dim: 1 dim: 2 } num_axes: 1 }
// reshape_param { shape { dim: 1 } num_axes: 0 }
//
// On the other hand, these would produce output blob shape 2 x 1 x 8:
//
// reshape_param { shape { dim: 2 dim: 1 dim: 8 } }
// reshape_param { shape { dim: 1 } axis: 1 num_axes: 0 }
//
optional int32 axis = 2 [default = 0];
optional int32 num_axes = 3 [default = -1];
}
message SigmoidConf {
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
optional Engine engine = 1 [default = DEFAULT];
}
message SliceConf {
// The axis along which to slice -- may be negative to index from the end
// (e.g., -1 for the last axis).
// By default, SliceLayer concatenates blobs along the "channels" axis (1).
optional int32 axis = 3 [default = 1];
repeated uint32 slice_point = 2;
// DEPRECATED: alias for "axis" -- does not support negative indexing.
optional uint32 slice_dim = 1 [default = 1];
}
// Message that stores hyper-parameters used by SoftmaxLayer, SoftmaxWithLossLayer
message SoftmaxConf {
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
optional Engine engine = 1 [default = DEFAULT];
// The axis along which to perform the softmax -- may be negative to index
// from the end (e.g., -1 for the last axis).
// Any other axes will be evaluated as independent softmaxes.
// optional int32 axis = 2 [default = 1];
/// The cudnn algorithm preferences
/// Options are: accurate, fast and log
optional string algorithm = 50 [default = "accurate"];
}
message TanHConf {
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
optional Engine engine = 1 [default = DEFAULT];
}
// Message that stores hyper-parameters used by TileLayer
message TileConf {
// The index of the axis to tile.
optional int32 axis = 1 [default = 1];
// The number of copies (tiles) of the blob to output.
optional int32 tiles = 2;
}
// Message that stores hyper-parameters used by ThresholdLayer
message ThresholdConf {
optional float threshold = 1 [default = 0]; // Strictly positive values
}
/*
message WindowDataConf {
// Specify the data source.
optional string source = 1;
// For data pre-processing, we can do simple scaling and subtracting the
// data mean, if provided. Note that the mean subtraction is always carried
// out before scaling.
optional float scale = 2 [default = 1];
optional string mean_file = 3;
// Specify the batch size.
optional uint32 batch_size = 4;
// Specify if we would like to randomly crop an image.
optional uint32 crop_size = 5 [default = 0];
// Specify if we want to randomly mirror data.
optional bool mirror = 6 [default = false];
// Foreground (object) overlap threshold
optional float fg_threshold = 7 [default = 0.5];
// Background (non-object) overlap threshold
optional float bg_threshold = 8 [default = 0.5];
// Fraction of batch that should be foreground objects
optional float fg_fraction = 9 [default = 0.25];
// Amount of contextual padding to add around a window
// (used only by the window_data_layer)
optional uint32 context_pad = 10 [default = 0];
// Mode for cropping out a detection window
// warp: cropped window is warped to a fixed size and aspect ratio
// square: the tightest square around the window is cropped
optional string crop_mode = 11 [default = "warp"];
// cache_images: will load all images in memory for faster access
optional bool cache_images = 12 [default = false];
// append root_folder to locate images
optional string root_folder = 13 [default = ""];
}
*/
message SPPConf {
enum PoolMethod {
MAX = 0;
AVE = 1;
STOCHASTIC = 2;
}
optional uint32 pyramid_height = 1;
optional PoolMethod pool = 2 [default = MAX]; // The pooling method
enum Engine {
DEFAULT = 0;
CAFFE = 1;
CUDNN = 2;
}
optional Engine engine = 6 [default = DEFAULT];
}
message PReLUConf {
// Parametric ReLU described in K. He et al, Delving Deep into Rectifiers:
// Surpassing Human-Level Performance on ImageNet Classification, 2015.
// Initial value of a_i. Default is a_i=0.25 for all i.
optional FillerConf filler = 1;
// Whether or not slope paramters are shared across channels.
optional bool channel_shared = 2 [default = false];
optional string format = 20 [default = "NCHW"];
}
message BatchNormConf {
// Used in the moving average computation runningMean =
// newMean*factor + runningMean*(1-factor).
optional double factor = 1 [default = 0.9];
}
message SplitConf {
// Indicate the number of outputs
optional int32 output_size = 1 [default = 2];
}