| # |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| # |
| |
| import os |
| import numpy as np |
| from PIL import Image |
| from sklearn import preprocessing |
| |
| from singa import device |
| from singa import tensor |
| from singa import sonnx |
| import onnx |
| from utils import download_model, check_exist_or_download |
| |
| import logging |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') |
| |
| |
| def preprocess(img): |
| w, h = img.size |
| img = img.crop((0, (h - w) // 2, w, h - (h - w) // 2)) |
| img = img.resize((112, 112)) |
| img = np.array(img).astype(np.float32) |
| img = np.rollaxis(img, 2, 0) |
| img = np.expand_dims(img, axis=0) |
| return img |
| |
| |
| def get_image(): |
| # download image |
| img1 = Image.open( |
| check_exist_or_download( |
| 'https://angus-doc.readthedocs.io/en/latest/_images/aurelien.jpg')) |
| img2 = Image.open( |
| check_exist_or_download( |
| 'https://angus-doc.readthedocs.io/en/latest/_images/gwenn.jpg')) |
| return img1, img2 |
| |
| |
| class MyModel(sonnx.SONNXModel): |
| |
| def __init__(self, onnx_model): |
| super(MyModel, self).__init__(onnx_model) |
| |
| def forward(self, *x): |
| y = super(MyModel, self).forward(*x) |
| return y[0] |
| |
| def train_one_batch(self, x, y): |
| pass |
| |
| |
| if __name__ == "__main__": |
| |
| download_dir = '/tmp' |
| url = 'https://s3.amazonaws.com/onnx-model-zoo/arcface/resnet100/resnet100.tar.gz' |
| model_path = os.path.join(download_dir, 'resnet100', 'resnet100.onnx') |
| |
| logging.info("onnx load model...") |
| download_model(url) |
| onnx_model = onnx.load(model_path) |
| |
| # inference demo |
| logging.info("preprocessing...") |
| img1, img2 = get_image() |
| img1 = preprocess(img1) |
| img2 = preprocess(img2) |
| # sg_ir = sonnx.prepare(onnx_model) # run without graph |
| # y = sg_ir.run([img1, img2]) |
| |
| logging.info("model compling...") |
| dev = device.create_cuda_gpu() |
| x = tensor.Tensor(device=dev, data=np.concatenate((img1, img2), axis=0)) |
| model = MyModel(onnx_model) |
| model.compile([x], is_train=False, use_graph=True, sequential=True) |
| |
| # verifty the test |
| # from utils import load_dataset |
| # inputs, ref_outputs = load_dataset(os.path.join('/tmp', 'resnet100', 'test_data_set_0')) |
| # x_batch = tensor.Tensor(device=dev, data=inputs[0]) |
| # outputs = sg_ir.run([x_batch]) |
| # for ref_o, o in zip(ref_outputs, outputs): |
| # np.testing.assert_almost_equal(ref_o, tensor.to_numpy(o), 4) |
| |
| logging.info("model running...") |
| y = model.forward(x) |
| |
| logging.info("postprocessing...") |
| embedding = tensor.to_numpy(y) |
| embedding = preprocessing.normalize(embedding) |
| embedding1 = embedding[0] |
| embedding2 = embedding[1] |
| |
| # Compute squared distance between embeddings |
| dist = np.sum(np.square(embedding1 - embedding2)) |
| # Compute cosine similarity between embedddings |
| sim = np.dot(embedding1, embedding2.T) |
| # logging.info predictions |
| logging.info('Distance = %f' % (dist)) |
| logging.info('Similarity = %f' % (sim)) |