blob: dc04be05e0a93ad73b6b9a57d8bbd6ac87056fb1 [file] [log] [blame]
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
/*interface file for swig */
%module model_layer
%include "std_vector.i"
%include "std_string.i"
%include "std_pair.i"
%include "std_shared_ptr.i"
// To make the code compatible between py2 and py3, the follow
// macro is required, which forces the
// interface (function) to accept byte string (from python) and
// return byte string (in python) in py3. Otherwise the strings
// should be unicode strings in py3.
// Note that by default the strings in python3 are of type unicode.
// You have to encode it with the correct encoding (default is utf-8)
// to convert it into bytes. Sometimes, the string is already byte string
// e.g. from protobuf SerializeToString, then there is no need to do
// conversion. The output byte strings should be decoded into unicode.
// For python2, the default type of string is byte string.
// Because protobuf::SerializeToString cannot be decoded into unicode
// string, we cannot use SWIG_PYTHON_2_UNICODE which forces the
// interface (function) to accept unicode strings as input args
// and return unicode strings.
// TODO(wangwei) make strings compatible between py2 and py3.
#include "singa/model/layer.h"
#include "../src/model/layer/rnn.h"
#include "../src/model/layer/cudnn_rnn.h"
#include "singa/core/tensor.h"
#include "singa/proto/model.pb.h"
#include "singa/singa_config.h"
using singa::Tensor;
using singa::ParamSpec;
using singa::DataType;
using singa::Device;
using singa::LayerConf;
using singa::Shape;
namespace std {
%template(VecStr) vector<string>;
%template(VecParamSpec) vector<singa::ParamSpec>;
%template(VecTensor) vector<singa::Tensor>;
%template(VecVecSize) vector<vector<size_t>>;
%template(PairTensorVecTensor) pair<singa::Tensor, vector<singa::Tensor>>;
%template(PairVecTensor) pair<vector<singa::Tensor>, vector<singa::Tensor>>;
namespace singa {
class Layer {
void Setup(const std::vector<size_t>&, const std::string& );
%rename(SetupWithMultInputs) Setup(const std::vector<std::vector<size_t>>&,
const std::string&);
void Setup(const std::vector<std::vector<size_t>>&, const std::string&);
virtual const std::vector<Tensor> param_values();
virtual const std::vector<size_t> GetOutputSampleShape() const;
%rename(GetOutputSampleShapeAt) GetOutputSampleShape(int k);
virtual const std::vector<size_t> GetOutputSampleShape(int k);
virtual void ToDevice(std::shared_ptr<Device> device);
virtual void AsType(DataType dtype);
virtual const Tensor Forward(int flag, const Tensor& input);
%rename(ForwardWithMultInputs) Forward(int flag, const std::vector<Tensor>&);
virtual const std::vector<Tensor> Forward(
int flag, const std::vector<Tensor>& inputs);
virtual const std::pair<Tensor, std::vector<Tensor>> Backward(
int flag, const Tensor& grad);
%rename(BackwardWithMultInputs) Backward(int, const std::vector<Tensor>&);
virtual const std::pair<std::vector<Tensor>, std::vector<Tensor>>
Backward(int flag, const std::vector<Tensor>& grads);
std::shared_ptr<Layer> CreateLayer(const std::string& type);
const std::vector<std::string> GetRegisteredLayers();
class RNN : public Layer {
#if CUDNN_VERSION >= 5005
class CudnnRNN : public RNN {
// note: Must use std::vector instead of vector.
%rename(ForwardWithMultInputs) Forward(int flag, const std::vector<Tensor>&);
const std::vector<Tensor> Forward(
int flag, const std::vector<Tensor>& inputs);
%rename(BackwardWithMultInputs) Backward(int, const std::vector<Tensor>&);
const std::pair<std::vector<Tensor>, std::vector<Tensor>>
Backward(int flag, const std::vector<Tensor>& grads);
void ToDevice(std::shared_ptr<Device> device) override;
const std::vector<Tensor> param_values() override;
const std::vector<size_t> GetOutputSampleShape() const override;
#endif // CUDNN_VERSION >= 5005
#endif // USE_CUDA && USE_CUDNN