blob: 908045168de58859b3c45fc53e5346cfce5de173 [file] [log] [blame]
#!/usr/bin/env python
#* Licensed to the Apache Software Foundation (ASF) under one
#* or more contributor license agreements. See the NOTICE file
#* distributed with this work for additional information
#* regarding copyright ownership. The ASF licenses this file
#* to you under the Apache License, Version 2.0 (the
#* "License"); you may not use this file except in compliance
#* with the License. You may obtain a copy of the License at
#* Unless required by applicable law or agreed to in writing,
#* software distributed under the License is distributed on an
#* KIND, either express or implied. See the License for the
#* specific language governing permissions and limitations
#* under the License.
import sys, os
from singa.model import *
from singa.datasets import mnist
# Sample parameter values for Mnist MLP example
pvalues = {'batchsize' : 64, 'shape' : 784,
'random_skip' : 5000,
'std_value' : 127.5, 'mean_value' : 127.5}
X_train, X_test, workspace = mnist.load_data(**pvalues)
m = Sequential('mlp', argv=sys.argv)
par = Parameter(init='uniform', scale=0.05)
m.add(Dense(2500, w_param=par, b_param=par, activation='tanh'))
m.add(Dense(2000, w_param=par, b_param=par, activation='tanh'))
m.add(Dense(1500, w_param=par, b_param=par, activation='tanh'))
m.add(Dense(1000, w_param=par, b_param=par, activation='tanh'))
m.add(Dense(500, w_param=par, b_param=par, activation='tanh'))
m.add(Dense(10, w_param=par, b_param=par, activation='softmax'))
sgd = SGD(lr=0.001, lr_type='step')
topo = Cluster(workspace)
m.compile(loss='categorical_crossentropy', optimizer=sgd, cluster=topo), nb_epoch=100, with_test=True)
result = m.evaluate(X_test, batch_size=100, test_steps=10)