blob: 028d1156eb6fd89e84138f6dfc262050fd5e9225 [file] [log] [blame] [view]
import ChangeLog from '../changelog/connector-fake.md';
# FakeSource
> FakeSource 连接器
## 支持的引擎
> Spark<br/>
> Flink<br/>
> SeaTunnel Zeta<br/>
## 描述
FakeSource 是一个虚拟数据源,它根据用户定义的 schema 数据结构随机生成指定数量的行数据,主要用于类型转换或连接器新功能测试等测试场景。
## 主要特性
- [x] [批处理](../../concept/connector-v2-features.md)
- [x] [流处理](../../concept/connector-v2-features.md)
- [ ] [精确一次](../../concept/connector-v2-features.md)
- [x] [列投影](../../concept/connector-v2-features.md)
- [ ] [并行度](../../concept/connector-v2-features.md)
- [ ] [支持用户自定义分片](../../concept/connector-v2-features.md)
## 数据源选项
| 名称 | 类型 | 必填 | 默认值 | 描述 |
|---------------------------|---------|------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tables_configs | list | | - | 定义多个 FakeSource,每个项可以包含完整的 FakeSource 配置描述 |
| schema | config | | - | 定义 Schema 信息 |
| auto.increment.enabled | boolean | | false | 启用自动递增ID |
| auto.increment.start | int | | | 自动递增ID的起始值 |
| row.num | int | | 5 | 每个并行度生成的数据总行数 |
| split.num | int | | 1 | 枚举器为每个并行度生成的分片数量 |
| split.read-interval | long | | 1 | 读取器在两个分片读取之间的间隔时间(毫秒) |
| map.size | int | | 5 | 连接器生成的 `map` 类型的大小 |
| array.size | int | | 5 | 连接器生成的 `array` 类型的大小 |
| bytes.length | int | | 5 | 连接器生成的 `bytes` 类型的长度 |
| string.length | int | | 5 | 连接器生成的 `string` 类型的长度 |
| string.fake.mode | string | | range | 生成字符串数据的伪数据模式,支持 `range` `template`,默认为 `range`,如果配置为 `template`,用户还需配置 `string.template` 选项 |
| string.template | list | | - | 连接器生成的字符串类型的模板列表,如果用户配置了此选项,连接器将从模板列表中随机选择一个项 |
| tinyint.fake.mode | string | | range | 生成 tinyint 数据的伪数据模式,支持 `range` `template`,默认为 `range`,如果配置为 `template`,用户还需配置 `tinyint.template` 选项 |
| tinyint.min | tinyint | | 0 | 连接器生成的 tinyint 数据的最小值 |
| tinyint.max | tinyint | | 127 | 连接器生成的 tinyint 数据的最大值 |
| tinyint.template | list | | - | 连接器生成的 tinyint 类型的模板列表,如果用户配置了此选项,连接器将从模板列表中随机选择一个项 |
| smallint.fake.mode | string | | range | 生成 smallint 数据的伪数据模式,支持 `range` `template`,默认为 `range`,如果配置为 `template`,用户还需配置 `smallint.template` 选项 |
| smallint.min | smallint | | 0 | 连接器生成的 smallint 数据的最小值 |
| smallint.max | smallint | | 32767 | 连接器生成的 smallint 数据的最大值 |
| smallint.template | list | | - | 连接器生成的 smallint 类型的模板列表,如果用户配置了此选项,连接器将从模板列表中随机选择一个项 |
| int.fake.template | string | | range | 生成 int 数据的伪数据模式,支持 `range` `template`,默认为 `range`,如果配置为 `template`,用户还需配置 `int.template` 选项 |
| int.min | smallint | | 0 | 连接器生成的 int 数据的最小值 |
| int.max | smallint | | 0x7fffffff | 连接器生成的 int 数据的最大值 |
| int.template | list | | - | 连接器生成的 int 类型的模板列表,如果用户配置了此选项,连接器将从模板列表中随机选择一个项 |
| bigint.fake.mode | string | | range | 生成 bigint 数据的伪数据模式,支持 `range` `template`,默认为 `range`,如果配置为 `template`,用户还需配置 `bigint.template` 选项 |
| bigint.min | bigint | | 0 | 连接器生成的 bigint 数据的最小值 |
| bigint.max | bigint | | 0x7fffffffffffffff | 连接器生成的 bigint 数据的最大值 |
| bigint.template | list | | - | 连接器生成的 bigint 类型的模板列表,如果用户配置了此选项,连接器将从模板列表中随机选择一个项 |
| float.fake.mode | string | | range | 生成 float 数据的伪数据模式,支持 `range` `template`,默认为 `range`,如果配置为 `template`,用户还需配置 `float.template` 选项 |
| float.min | float | | 0 | 连接器生成的 float 数据的最小值 |
| float.max | float | | 0x1.fffffeP+127 | 连接器生成的 float 数据的最大值 |
| float.template | list | | - | 连接器生成的 float 类型的模板列表,如果用户配置了此选项,连接器将从模板列表中随机选择一个项 |
| double.fake.mode | string | | range | 生成 double 数据的伪数据模式,支持 `range` `template`,默认为 `range`,如果配置为 `template`,用户还需配置 `double.template` 选项 |
| double.min | double | | 0 | 连接器生成的 double 数据的最小值 |
| double.max | double | | 0x1.fffffffffffffP+1023 | 连接器生成的 double 数据的最大值 |
| double.template | list | | - | 连接器生成的 double 类型的模板列表,如果用户配置了此选项,连接器将从模板列表中随机选择一个项 |
| vector.dimension | int | | 4 | 生成的向量的维度,不包括二进制向量 |
| binary.vector.dimension | int | | 8 | 生成的二进制向量的维度 |
| vector.float.min | float | | 0 | 连接器生成的向量中 float 数据的最小值 |
| vector.float.max | float | | 0x1.fffffeP+127 | 连接器生成的向量中 float 数据的最大值 |
| common-options | | | - | 数据源插件通用参数,详情请参考 [Source Common Options](../source-common-options.md) |
## 任务示例
### 简单示例
> 此示例随机生成指定类型的数据。如果您想了解如何声明字段类型,请点击 [这里](../../concept/schema-feature.md#how-to-declare-type-supported)。
```hocon
schema = {
fields {
c_map = "map<string, array<int>>"
c_map_nest = "map<string, {c_int = int, c_string = string}>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(30, 8)"
c_null = "null"
c_bytes = bytes
c_date = date
c_timestamp = timestamp
c_row = {
c_map = "map<string, map<string, string>>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(30, 8)"
c_null = "null"
c_bytes = bytes
c_date = date
c_timestamp = timestamp
}
}
}
```
### 随机生成
> 随机生成 16 条符合类型的数据
```hocon
source {
# 这是一个示例输入插件,**仅用于测试和演示功能输入插件**
FakeSource {
row.num = 16
schema = {
fields {
c_map = "map<string, string>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(30, 8)"
c_null = "null"
c_bytes = bytes
c_date = date
c_timestamp = timestamp
}
}
plugin_output = "fake"
}
}
```
### 自定义数据内容简单示例
> 这是一个自定义数据源信息的示例,定义每条数据是添加还是删除修改操作,并定义每个字段存储的内容
```hocon
source {
FakeSource {
schema = {
fields {
c_map = "map<string, string>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(30, 8)"
c_null = "null"
c_bytes = bytes
c_date = date
c_timestamp = timestamp
}
}
rows = [
{
kind = INSERT
fields = [{"a": "b"}, [101], "c_string", true, 117, 15987, 56387395, 7084913402530365000, 1.23, 1.23, "2924137191386439303744.39292216", null, "bWlJWmo=", "2023-04-22", "2023-04-22T23:20:58"]
}
{
kind = UPDATE_BEFORE
fields = [{"a": "c"}, [102], "c_string", true, 117, 15987, 56387395, 7084913402530365000, 1.23, 1.23, "2924137191386439303744.39292216", null, "bWlJWmo=", "2023-04-22", "2023-04-22T23:20:58"]
}
{
kind = UPDATE_AFTER
fields = [{"a": "e"}, [103], "c_string", true, 117, 15987, 56387395, 7084913402530365000, 1.23, 1.23, "2924137191386439303744.39292216", null, "bWlJWmo=", "2023-04-22", "2023-04-22T23:20:58"]
}
{
kind = DELETE
fields = [{"a": "f"}, [104], "c_string", true, 117, 15987, 56387395, 7084913402530365000, 1.23, 1.23, "2924137191386439303744.39292216", null, "bWlJWmo=", "2023-04-22", "2023-04-22T23:20:58"]
}
]
}
}
```
> 由于 [HOCON](https://github.com/lightbend/config/blob/main/HOCON.md) 规范的限制,用户无法直接创建字节序列对象。FakeSource 使用字符串来分配 `bytes` 类型的值。在上面的示例中,`bytes` 类型字段被分配了 `"bWlJWmo="`,这是通过 **base64** 编码的 "miIZj"。因此,在为 `bytes` 类型字段赋值时,请使用 **base64** 编码的字符串。
### 指定数据数量简单示例
> 此案例指定生成数据的数量以及生成值的长度
```hocon
FakeSource {
row.num = 10
map.size = 10
array.size = 10
bytes.length = 10
string.length = 10
schema = {
fields {
c_map = "map<string, array<int>>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(30, 8)"
c_null = "null"
c_bytes = bytes
c_date = date
c_timestamp = timestamp
c_row = {
c_map = "map<string, map<string, string>>"
c_array = "array<int>"
c_string = string
c_boolean = boolean
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
c_decimal = "decimal(30, 8)"
c_null = "null"
c_bytes = bytes
c_date = date
c_timestamp = timestamp
}
}
}
}
```
### 模板数据简单示例
> 根据指定模板随机生成
使用模板
```hocon
FakeSource {
row.num = 5
string.fake.mode = "template"
string.template = ["tyrantlucifer", "hailin", "kris", "fanjia", "zongwen", "gaojun"]
tinyint.fake.mode = "template"
tinyint.template = [1, 2, 3, 4, 5, 6, 7, 8, 9]
smalling.fake.mode = "template"
smallint.template = [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
int.fake.mode = "template"
int.template = [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
bigint.fake.mode = "template"
bigint.template = [30, 31, 32, 33, 34, 35, 36, 37, 38, 39]
float.fake.mode = "template"
float.template = [40.0, 41.0, 42.0, 43.0]
double.fake.mode = "template"
double.template = [44.0, 45.0, 46.0, 47.0]
schema {
fields {
c_string = string
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
}
}
}
```
### 范围数据简单示例
> 在指定的数据生成范围内随机生成
```hocon
FakeSource {
row.num = 5
string.template = ["tyrantlucifer", "hailin", "kris", "fanjia", "zongwen", "gaojun"]
tinyint.min = 1
tinyint.max = 9
smallint.min = 10
smallint.max = 19
int.min = 20
int.max = 29
bigint.min = 30
bigint.max = 39
float.min = 40.0
float.max = 43.0
double.min = 44.0
double.max = 47.0
schema {
fields {
c_string = string
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
}
}
}
```
### 生成多张表
> 这是一个生成多数据源测试表 `test.table1` `test.table2` 的示例
```hocon
FakeSource {
tables_configs = [
{
row.num = 16
schema {
table = "test.table1"
fields {
c_string = string
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
}
}
},
{
row.num = 17
schema {
table = "test.table2"
fields {
c_string = string
c_tinyint = tinyint
c_smallint = smallint
c_int = int
c_bigint = bigint
c_float = float
c_double = double
}
}
}
]
}
```
### `rows` 选项示例
```hocon
rows = [
{
kind = INSERT
fields = [1, "A", 100]
},
{
kind = UPDATE_BEFORE
fields = [1, "A", 100]
},
{
kind = UPDATE_AFTER
fields = [1, "A_1", 100]
},
{
kind = DELETE
fields = [1, "A_1", 100]
}
]
```
### `table-names` 选项示例
```hocon
source {
# 这是一个示例源插件,**仅用于测试和演示源插件功能**
FakeSource {
table-names = ["test.table1", "test.table2", "test.table3"]
parallelism = 1
schema = {
fields {
name = "string"
age = "int"
}
}
}
}
```
### `defaultValue` 选项示例
可以通过 `row` `columns` 生成自定义数据。对于时间类型,可以通过 `CURRENT_TIMESTAMP``CURRENT_TIME``CURRENT_DATE` 获取当前时间。
```hocon
schema = {
fields {
pk_id = bigint
name = string
score = int
time1 = timestamp
time2 = time
time3 = date
}
}
# 使用 rows
rows = [
{
kind = INSERT
fields = [1, "A", 100, CURRENT_TIMESTAMP, CURRENT_TIME, CURRENT_DATE]
}
]
```
```hocon
schema = {
# 使用 columns
columns = [
{
name = book_publication_time
type = timestamp
defaultValue = "2024-09-12 15:45:30"
comment = "书籍出版时间"
},
{
name = book_publication_time2
type = timestamp
defaultValue = CURRENT_TIMESTAMP
comment = "书籍出版时间2"
},
{
name = book_publication_time3
type = time
defaultValue = "15:45:30"
comment = "书籍出版时间3"
},
{
name = book_publication_time4
type = time
defaultValue = CURRENT_TIME
comment = "书籍出版时间4"
},
{
name = book_publication_time5
type = date
defaultValue = "2024-09-12"
comment = "书籍出版时间5"
},
{
name = book_publication_time6
type = date
defaultValue = CURRENT_DATE
comment = "书籍出版时间6"
}
]
}
```
### 使用向量示例
```hocon
source {
FakeSource {
row.num = 10
# 低优先级
vector.dimension= 4
binary.vector.dimension = 8
# 低优先级
schema = {
table = "simple_example"
columns = [
{
name = book_id
type = bigint
nullable = false
defaultValue = 0
comment = "主键 ID"
},
{
name = book_intro_1
type = binary_vector
columnScale =8
comment = "向量"
},
{
name = book_intro_2
type = float16_vector
columnScale =4
comment = "向量"
},
{
name = book_intro_3
type = bfloat16_vector
columnScale =4
comment = "向量"
},
{
name = book_intro_4
type = sparse_float_vector
columnScale =4
comment = "向量"
}
]
}
}
}
```
### 自增主键示例
```hocon
source {
# This is a example source plugin **only for test and demonstrate the feature source plugin**
FakeSource {
plugin_output = "fake"
auto.increment.enabled = true
auto.increment.start = 1000
row.num = 50000
schema = {
fields {
id = "int"
name = "string"
age = "int"
}
primaryKey {
name = "pk"
columnNames = [id]
}
}
}
}
```
## 变更日志
<ChangeLog />