blob: 291bcfc5c52f2dd28efe8cad8f6a63d5833b64da [file] [log] [blame] [view]
# SQL UDF
> UDF of SQL transform plugin
## Description
Use UDF SPI to extend the SQL transform functions lib.
## UDF API
```java
package org.apache.seatunnel.transform.sql.zeta;
public interface ZetaUDF {
/**
* Function name
*
* @return function name
*/
String functionName();
/**
* The type of function result
*
* @param argsType input arguments type
* @return result type
*/
SeaTunnelDataType<?> resultType(List<SeaTunnelDataType<?>> argsType);
/**
* Evaluate
*
* @param args input arguments
* @return result value
*/
Object evaluate(List<Object> args);
}
```
## UDF Implements Example
Add these dependencies and provided scope to your maven project:
```xml
<dependencies>
<dependency>
<groupId>org.apache.seatunnel</groupId>
<artifactId>seatunnel-transforms-v2</artifactId>
<version>2.3.2</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.seatunnel</groupId>
<artifactId>seatunnel-api</artifactId>
<version>2.3.2</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.google.auto.service</groupId>
<artifactId>auto-service</artifactId>
<version>1.0.1</version>
<scope>provided</scope>
</dependency>
</dependencies>
```
Add a Java Class implements of ZetaUDF like this:
```java
@AutoService(ZetaUDF.class)
public class ExampleUDF implements ZetaUDF {
@Override
public String functionName() {
return "EXAMPLE";
}
@Override
public SeaTunnelDataType<?> resultType(List<SeaTunnelDataType<?>> argsType) {
return BasicType.STRING_TYPE;
}
@Override
public Object evaluate(List<Object> args) {
String arg = (String) args.get(0);
if (arg == null) return null;
return "UDF: " + arg;
}
}
```
Package the UDF project and copy the jar to the path: ${SEATUNNEL_HOME}/lib. And if your UDF use third party library, you also need put it to ${SEATUNNEL_HOME}/lib.
If you use cluster mode, you need put the lib to all your node's ${SEATUNNEL_HOME}/lib folder and re-start the cluster.
## Example
The data read from source is a table like this:
| id | name | age |
|----|----------|-----|
| 1 | Joy Ding | 20 |
| 2 | May Ding | 21 |
| 3 | Kin Dom | 24 |
| 4 | Joy Dom | 22 |
We use UDF of SQL query to transform the source data like this:
```
transform {
Sql {
plugin_input = "fake"
plugin_output = "fake1"
query = "select id, example(name) as name, age from dual"
}
}
```
Then the data in result table `fake1` will update to
| id | name | age |
|----|---------------|-----|
| 1 | UDF: Joy Ding | 20 |
| 2 | UDF: May Ding | 21 |
| 3 | UDF: Kin Dom | 24 |
| 4 | UDF: Joy Dom | 22 |
## Changelog
### new version
- Add UDF of SQL Transform Connector