This sample regression engine reads data from file system.
Edit the file path in engine.json, change filepath of datasource to an absolute path that points to lr_data.py
$ cat engine.json
...
"datasource": {
"filepath": <absolute_path_to_lr_data.txt>,
"k": 3,
"seed": 9527
}
...
$ pio build $ pio train $ pio deploy --port 9998
$ curl -X POST http://localhost:9998/queries.json -d \ '[1.80,0.87,2.41,0.35,-0.21,1.35,0.51,1.55,-0.20,1.32]' 0.8912731719174509
0.89... is the prediction result.