blob: 8521af2b9cfeb391d24825cdfa159f45b7a1a66b [file] [log] [blame]
package org.template.recommendation
import io.prediction.controller.PAlgorithm
import io.prediction.controller.Params
import io.prediction.data.storage.BiMap
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.rdd.RDD
import org.apache.spark.mllib.recommendation.ALS
import org.apache.spark.mllib.recommendation.{Rating => MLlibRating}
import org.apache.spark.mllib.recommendation.ALSModel
import grizzled.slf4j.Logger
case class ALSAlgorithmParams(
rank: Int,
numIterations: Int,
lambda: Double,
seed: Option[Long]) extends Params
class ALSAlgorithm(val ap: ALSAlgorithmParams)
extends PAlgorithm[PreparedData, ALSModel, Query, PredictedResult] {
@transient lazy val logger = Logger[this.type]
def train(data: PreparedData): ALSModel = {
// MLLib ALS cannot handle empty training data.
require(!data.ratings.take(1).isEmpty,
s"RDD[Rating] in PreparedData cannot be empty." +
" Please check if DataSource generates TrainingData" +
" and Preprator generates PreparedData correctly.")
// Convert user and item String IDs to Int index for MLlib
val userStringIntMap = BiMap.stringInt(data.ratings.map(_.user))
val itemStringIntMap = BiMap.stringInt(data.ratings.map(_.item))
val mllibRatings = data.ratings.map( r =>
// MLlibRating requires integer index for user and item
MLlibRating(userStringIntMap(r.user), itemStringIntMap(r.item), r.rating)
)
// seed for MLlib ALS
val seed = ap.seed.getOrElse(System.nanoTime)
// If you only have one type of implicit event (Eg. "view" event only),
// replace ALS.train(...) with
//val m = ALS.trainImplicit(
//ratings = mllibRatings,
//rank = ap.rank,
//iterations = ap.numIterations,
//lambda = ap.lambda,
//blocks = -1,
//alpha = 1.0,
//seed = seed)
val m = ALS.train(
ratings = mllibRatings,
rank = ap.rank,
iterations = ap.numIterations,
lambda = ap.lambda,
blocks = -1,
seed = seed)
new ALSModel(
rank = m.rank,
userFeatures = m.userFeatures,
productFeatures = m.productFeatures,
userStringIntMap = userStringIntMap,
itemStringIntMap = itemStringIntMap)
}
def predict(model: ALSModel, query: Query): PredictedResult = {
// Convert String ID to Int index for Mllib
model.userStringIntMap.get(query.user).map { userInt =>
// create inverse view of itemStringIntMap
val itemIntStringMap = model.itemStringIntMap.inverse
// recommendProducts() returns Array[MLlibRating], which uses item Int
// index. Convert it to String ID for returning PredictedResult
val itemScores = model.recommendProducts(userInt, query.num)
.map (r => ItemScore(itemIntStringMap(r.product), r.rating))
new PredictedResult(itemScores)
}.getOrElse{
logger.info(s"No prediction for unknown user ${query.user}.")
new PredictedResult(Array.empty)
}
}
}