phoenix-spark extends Phoenix's MapReduce support to allow Spark to load Phoenix tables as RDDs or DataFrames, and enables persisting RDDs of Tuples back to Phoenix.
Given a Phoenix table with the following DDL
CREATE TABLE TABLE1 (ID BIGINT NOT NULL PRIMARY KEY, COL1 VARCHAR); UPSERT INTO TABLE1 (ID, COL1) VALUES (1, 'test_row_1'); UPSERT INTO TABLE1 (ID, COL1) VALUES (2, 'test_row_2');
import org.apache.spark.SparkContext import org.apache.spark.sql.SQLContext import org.apache.phoenix.spark._ val sc = new SparkContext("local", "phoenix-test") val sqlContext = new SQLContext(sc) val df = sqlContext.load( "org.apache.phoenix.spark", Map("table" -> "TABLE1", "zkUrl" -> "phoenix-server:2181") ) df .filter(df("COL1") === "test_row_1" && df("ID") === 1L) .select(df("ID")) .show
import org.apache.hadoop.conf.Configuration import org.apache.spark.SparkContext import org.apache.spark.sql.SQLContext import org.apache.phoenix.spark._ val configuration = new Configuration() // Can set Phoenix-specific settings, requires 'hbase.zookeeper.quorum' val sc = new SparkContext("local", "phoenix-test") val sqlContext = new SQLContext(sc) // Load the columns 'ID' and 'COL1' from TABLE1 as a DataFrame val df = sqlContext.phoenixTableAsDataFrame( "TABLE1", Array("ID", "COL1"), conf = configuration ) df.show
import org.apache.spark.SparkContext import org.apache.spark.sql.SQLContext import org.apache.phoenix.spark._ val sc = new SparkContext("local", "phoenix-test") // Load the columns 'ID' and 'COL1' from TABLE1 as an RDD val rdd: RDD[Map[String, AnyRef]] = sc.phoenixTableAsRDD( "TABLE1", Seq("ID", "COL1"), zkUrl = Some("phoenix-server:2181") ) rdd.count() val firstId = rdd1.first()("ID").asInstanceOf[Long] val firstCol = rdd1.first()("COL1").asInstanceOf[String]
saveToPhoenix is an implicit method on RDD[Product], or an RDD of Tuples. The data types must correspond to the Java types Phoenix supports (http://phoenix.apache.org/language/datatypes.html)
Given a Phoenix table with the following DDL
CREATE TABLE OUTPUT_TEST_TABLE (id BIGINT NOT NULL PRIMARY KEY, col1 VARCHAR, col2 INTEGER);
import org.apache.spark.SparkContext import org.apache.phoenix.spark._ val sc = new SparkContext("local", "phoenix-test") val dataSet = List((1L, "1", 1), (2L, "2", 2), (3L, "3", 3)) sc .parallelize(dataSet) .saveToPhoenix( "OUTPUT_TEST_TABLE", Seq("ID","COL1","COL2"), zkUrl = Some("phoenix-server:2181") )
The save is method on DataFrame allows passing in a data source type. You can use org.apache.phoenix.spark, and must also pass in a table and zkUrl parameter to specify which table and server to persist the DataFrame to. The column names are derived from the DataFrame's schema field names, and must match the Phoenix column names.
The save method also takes a SaveMode option, for which only SaveMode.Overwrite is supported.
Given two Phoenix tables with the following DDL:
CREATE TABLE INPUT_TABLE (id BIGINT NOT NULL PRIMARY KEY, col1 VARCHAR, col2 INTEGER); CREATE TABLE OUTPUT_TABLE (id BIGINT NOT NULL PRIMARY KEY, col1 VARCHAR, col2 INTEGER);
import org.apache.spark.SparkContext import org.apache.spark.sql.SQLContext import org.apache.phoenix.spark._ // Load INPUT_TABLE val sc = new SparkContext("local", "phoenix-test") val sqlContext = new SQLContext(sc) val df = sqlContext.load("org.apache.phoenix.spark", Map("table" -> "INPUT_TABLE", "zkUrl" -> hbaseConnectionString)) // Save to OUTPUT_TABLE df.save("org.apache.phoenix.spark", SaveMode.Overwrite, Map("table" -> "OUTPUT_TABLE", "zkUrl" -> hbaseConnectionString))
The functions phoenixTableAsDataFrame, phoenixTableAsRDD and saveToPhoenix all support optionally specifying a conf Hadoop configuration parameter with custom Phoenix client settings, as well as an optional zkUrl parameter for the Phoenix connection URL.
If zkUrl isn‘t specified, it’s assumed that the “hbase.zookeeper.quorum” property has been set in the conf parameter. Similarly, if no configuration is passed in, zkUrl must be specified.