Test data files for Parquet compatibility and regression testing

FileDescription
delta_byte_array.parquetstring columns with DELTA_BYTE_ARRAY encoding. See delta_byte_array.md for details.
delta_length_byte_array.parquetstring columns with DELTA_LENGTH_BYTE_ARRAY encoding.
delta_binary_packed.parquetINT32 and INT64 columns with DELTA_BINARY_PACKED encoding. See delta_binary_packed.md for details.
delta_encoding_required_column.parquetrequired INT32 and STRING columns with delta encoding. See delta_encoding_required_column.md for details.
delta_encoding_optional_column.parquetoptional INT64 and STRING columns with delta encoding. See delta_encoding_optional_column.md for details.
nested_structs.rust.parquetUsed to test that the Rust Arrow reader can lookup the correct field from a nested struct. See ARROW-11452
data_index_bloom_encoding_stats.parquetoptional STRING column. Contains optional metadata: bloom filters, column index, offset index and encoding stats.
data_index_bloom_encoding_with_length.parquetSame as data_index_bloom_encoding_stats.parquet but has bloom_filter_length populated in the ColumnMetaData
null_list.parquetan empty list. Generated from this json {"emptylist":[]} and for the purposes of testing correct read/write behaviour of this base case.
alltypes_tiny_pages.parquetsmall page sizes with dictionary encoding with page index from impala.
alltypes_tiny_pages_plain.parquetsmall page sizes with plain encoding with page index impala.
rle_boolean_encoding.parquetoption boolean columns with RLE encoding
fixed_length_byte_array.parquetoptional FIXED_LENGTH_BYTE_ARRAY column with page index. See fixed_length_byte_array.md for details.
int32_with_null_pages.parquetoptional INT32 column with random null pages. See int32_with_null_pages.md for details.
datapage_v1-uncompressed-checksum.parquetuncompressed INT32 columns in v1 data pages with a matching CRC
datapage_v1-snappy-compressed-checksum.parquetcompressed INT32 columns in v1 data pages with a matching CRC
datapage_v1-corrupt-checksum.parquetuncompressed INT32 columns in v1 data pages with a mismatching CRC
overflow_i16_page_cnt.parquetrow group with more than INT16_MAX pages
bloom_filter.bindeprecated bloom filter binary with binary header and murmur3 hashing
bloom_filter.xxhash.binbloom filter binary with thrift header and xxhash hashing
nan_in_stats.parquetstatistics contains NaN in max, from PyArrow 0.8.0. See note below on “NaN in stats”.
rle-dict-snappy-checksum.parquetcompressed and dictionary-encoded INT32 and STRING columns in format v2 with a matching CRC
plain-dict-uncompressed-checksum.parquetuncompressed and dictionary-encoded INT32 and STRING columns in format v1 with a matching CRC
rle-dict-uncompressed-corrupt-checksum.parquetuncompressed and dictionary-encoded INT32 and STRING columns in format v2 with a mismatching CRC
large_string_map.brotli.parquetMAP(STRING, INT32) with a string column chunk of more than 2GB. See note below
float16_nonzeros_and_nans.parquetFloat16 (logical type) column with NaNs and nonzero finite min/max values
float16_zeros_and_nans.parquetFloat16 (logical type) column with NaNs and zeros as min/max values. . See note below
concatenated_gzip_members.parquet513 UINT64 numbers compressed using 2 concatenated gzip members in a single data page
byte_stream_split.zstd.parquetStandard normals with BYTE_STREAM_SPLIT encoding. See note below

TODO: Document what each file is in the table above.

Encrypted Files

Tests files with .parquet.encrypted suffix are encrypted using Parquet Modular Encryption.

A detailed description of the Parquet Modular Encryption specification can be found here:

 https://github.com/apache/parquet-format/blob/encryption/Encryption.md

Following are the keys and key ids (when using key_retriever) used to encrypt the encrypted columns and footer in all the encrypted files:

  • Encrypted/Signed Footer:
    • key: {0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5}
    • key_id: “kf”
  • Encrypted column named double_field (including column and offset index):
    • key: {1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,0}
    • key_id: “kc1”
  • Encrypted column named float_field (including column and offset index):
    • key: {1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,1}
    • key_id: “kc2”

The following files are encrypted with AAD prefix “tester”:

  1. encrypt_columns_and_footer_disable_aad_storage.parquet.encrypted
  2. encrypt_columns_and_footer_aad.parquet.encrypted

A sample that reads and checks these files can be found at the following tests in Parquet C++:

cpp/src/parquet/encryption/read-configurations-test.cc
cpp/src/parquet/encryption/test-encryption-util.h

The external_key_material_java.parquet.encrypted file was encrypted using parquet-mr with external key material enabled, so the key material is found in the _KEY_MATERIAL_FOR_external_key_material_java.parquet.encrypted.json file. This data was written using the org.apache.parquet.crypto.keytools.mocks.InMemoryKMS KMS client, which is compatible with the TestOnlyInServerWrapKms KMS client used in C++ tests.

Checksum Files

The schema for the datapage_v1-*-checksum.parquet test files is:

message m {
    required int32 a;
    required int32 b;
}

The detailed structure for these files is as follows:

  • data/datapage_v1-uncompressed-checksum.parquet:

    [ Column "a" [ Page 0 [correct crc] | Uncompressed Contents ][ Page 1 [correct crc] | Uncompressed Contents ]]
    [ Column "b" [ Page 0 [correct crc] | Uncompressed Contents ][ Page 1 [correct crc] | Uncompressed Contents ]]
    
  • data/datapage_v1-snappy-compressed-checksum.parquet:

    [ Column "a" [ Page 0 [correct crc] | Snappy Contents ][ Page 1 [correct crc] | Snappy Contents ]]
    [ Column "b" [ Page 0 [correct crc] | Snappy Contents ][ Page 1 [correct crc] | Snappy Contents ]]
    
  • data/datapage_v1-corrupt-checksum.parquet:

    [ Column "a" [ Page 0 [bad crc] | Uncompressed Contents ][ Page 1 [correct crc] | Uncompressed Contents ]]
    [ Column "b" [ Page 0 [correct crc] | Uncompressed Contents ][ Page 1 [bad crc] | Uncompressed Contents ]]
    

The schema for the *-dict-*-checksum.parquet test files is:

  • data/rle-dict-snappy-checksum.parquet:

    [ Column "long_field" [ Dict Page [correct crc] | Compressed PLAIN Contents ][ Page 0 [correct crc] | Compressed RLE_DICTIONARY Contents ]]
    [ Column "binary_field" [ Dict Page [correct crc] | Compressed PLAIN Contents ][ Page 0 [correct crc] | Compressed RLE_DICTIONARY Contents ]]
    
  • data/plain-dict-uncompressed-checksum.parquet:

    [ Column "long_field" [ Dict Page [correct crc] | Uncompressed PLAIN_DICTIONARY(DICT) Contents ][ Page 0 [correct crc] | Uncompressed PLAIN_DICTIONARY Contents ]]
    [ Column "binary_field" [ Dict Page [correct crc] | Uncompressed PLAIN_DICTIONARY(DICT) Contents ][ Page 0 [correct crc] | Uncompressed PLAIN_DICTIONARY Contents ]]
    
  • data/rle-dict-uncompressed-corrupt-checksum.parquet:

    [ Column "long_field" [ Dict Page [bad crc] | Uncompressed PLAIN Contents ][ Page 0 [correct crc] | Uncompressed RLE_DICTIONARY Contents ]]
    [ Column "binary_field" [ Dict Page [bad crc] | Uncompressed PLAIN Contents ][ Page 0 [correct crc] | Uncompressed RLE_DICTIONARY Contents ]]
    

Bloom Filter Files

Bloom filter examples have been generated by parquet-mr. They are not Parquet files but only contain the bloom filter header and payload.

For each of bloom_filter.bin and bloom_filter.xxhash.bin, the bloom filter was generated by inserting the strings “hello”, “parquet”, “bloom”, “filter”.

bloom_filter.bin uses the original Murmur3-based bloom filter format as of https://github.com/apache/parquet-format/commit/54839ad5e04314c944fed8aa4bc6cf15e4a58698.

bloom_filter.xxhash.bin uses the newer xxHash-based bloom filter format as of https://github.com/apache/parquet-format/commit/3fb10e00c2204bf1c6cc91e094c59e84cefcee33.

NaN in stats

Prior to version 1.4.0, the C++ Parquet writer would write NaN values in min and max statistics. (Correction in this issue). It has been updated since to ignore NaN values when calculating statistics, but for backwards compatibility the following rules were established (in PARQUET-1222):

For backwards compatibility when reading files:

  • If the min is a NaN, it should be ignored.
  • If the max is a NaN, it should be ignored.
  • If the min is +0, the row group may contain -0 values as well.
  • If the max is -0, the row group may contain +0 values as well.
  • When looking for NaN values, min and max should be ignored.

The file nan_in_stats.parquet was generated with:

import pyarrow as pa # version 0.8.0
import pyarrow.parquet as pq
from numpy import NaN

tab = pa.Table.from_arrays(
    [pa.array([1.0, NaN])],
    names="x"
)

pq.write_table(tab, "nan_in_stats.parquet")

metadata = pq.read_metadata("nan_in_stats.parquet")
metadata.row_group(0).column(0)
# <pyarrow._parquet.ColumnChunkMetaData object at 0x7f28539e58f0>
#   file_offset: 88
#   file_path:
#   type: DOUBLE
#   num_values: 2
#   path_in_schema: x
#   is_stats_set: True
#   statistics:
#     <pyarrow._parquet.RowGroupStatistics object at 0x7f28539e5738>
#       has_min_max: True
#       min: 1
#       max: nan
#       null_count: 0
#       distinct_count: 0
#       num_values: 2
#       physical_type: DOUBLE
#   compression: 1
#   encodings: <map object at 0x7f28539eb4e0>
#   has_dictionary_page: True
#   dictionary_page_offset: 4
#   data_page_offset: 36
#   index_page_offset: 0
#   total_compressed_size: 84
#   total_uncompressed_size: 80

Large string map

The file large_string_map.brotli.parquet was generated with:

import pyarrow as pa
import pyarrow.parquet as pq

arr = pa.array([[("a" * 2**30, 1)]], type = pa.map_(pa.string(), pa.int32()))
arr = pa.chunked_array([arr, arr])
tab = pa.table({ "arr": arr })

pq.write_table(tab, "test.parquet", compression='BROTLI')

It is meant to exercise reading of structured data where each value is smaller than 2GB but the combined uncompressed column chunk size is greater than 2GB.

Float16 Files

The files float16_zeros_and_nans.parquet and float16_nonzeros_and_nans.parquet are meant to exercise a variety of test cases regarding Float16 columns (which are represented as 2-byte FixedLenByteArrays), including:

  • Basic binary representations of standard values, +/- zeros, and NaN
  • Comparisons between finite values
  • Exclusion of NaNs from statistics min/max
  • Normalizing min/max values when only zeros are present (i.e. min is always -0 and max is always +0)

The aforementioned files were generated with:

import pyarrow as pa
import pyarrow.parquet as pq
import numpy as np

t1 = pa.Table.from_arrays(
    [pa.array([None,
               np.float16(0.0),
               np.float16(np.NaN)], type=pa.float16())],
    names="x")
t2 = pa.Table.from_arrays(
    [pa.array([None,
               np.float16(1.0),
               np.float16(-2.0),
               np.float16(np.NaN),
               np.float16(0.0),
               np.float16(-1.0),
               np.float16(-0.0),
               np.float16(2.0)],
              type=pa.float16())],
    names="x")

pq.write_table(t1, "float16_zeros_and_nans.parquet", compression='none')
pq.write_table(t2, "float16_nonzeros_and_nans.parquet", compression='none')

m1 = pq.read_metadata("float16_zeros_and_nans.parquet")
m2 = pq.read_metadata("float16_nonzeros_and_nans.parquet")

print(m1.row_group(0).column(0))
print(m2.row_group(0).column(0))
# <pyarrow._parquet.ColumnChunkMetaData object at 0x7f79e9a3d850>
#   file_offset: 68
#   file_path:
#   physical_type: FIXED_LEN_BYTE_ARRAY
#   num_values: 3
#   path_in_schema: x
#   is_stats_set: True
#   statistics:
#     <pyarrow._parquet.Statistics object at 0x7f79e9a3d940>
#       has_min_max: True
#       min: b'\x00\x80'
#       max: b'\x00\x00'
#       null_count: 1
#       distinct_count: None
#       num_values: 2
#       physical_type: FIXED_LEN_BYTE_ARRAY
#       logical_type: Float16
#       converted_type (legacy): NONE
#   compression: UNCOMPRESSED
#   encodings: ('PLAIN', 'RLE', 'RLE_DICTIONARY')
#   has_dictionary_page: True
#   dictionary_page_offset: 4
#   data_page_offset: 22
#   total_compressed_size: 64
#   total_uncompressed_size: 64
# <pyarrow._parquet.ColumnChunkMetaData object at 0x7f79ea003c40>
#   file_offset: 80
#   file_path:
#   physical_type: FIXED_LEN_BYTE_ARRAY
#   num_values: 8
#   path_in_schema: x
#   is_stats_set: True
#   statistics:
#     <pyarrow._parquet.Statistics object at 0x7f79e9a3d8a0>
#       has_min_max: True
#       min: b'\x00\xc0'
#       max: b'\x00@'
#       null_count: 1
#       distinct_count: None
#       num_values: 7
#       physical_type: FIXED_LEN_BYTE_ARRAY
#       logical_type: Float16
#       converted_type (legacy): NONE
#   compression: UNCOMPRESSED
#   encodings: ('PLAIN', 'RLE', 'RLE_DICTIONARY')
#   has_dictionary_page: True
#   dictionary_page_offset: 4
#   data_page_offset: 32
#   total_compressed_size: 76
#   total_uncompressed_size: 76

Byte Stream Split

FLOAT and DOUBLE data

byte_stream_split.zstd.parquet is generated by pyarrow 14.0.2 using the following code:

import pyarrow as pa
from pyarrow import parquet as pq
import numpy as np

np.random.seed(0)
table = pa.Table.from_pydict({
  'f32': np.random.normal(size=300).astype(np.float32),
  'f64': np.random.normal(size=300).astype(np.float64),
})

pq.write_table(
  table,
  'byte_stream_split.parquet',
  version='2.6',
  compression='zstd',
  compression_level=22,
  column_encoding='BYTE_STREAM_SPLIT',
  use_dictionary=False,
)

This is a practical case where BYTE_STREAM_SPLIT encoding obtains a smaller file size than PLAIN or dictionary. Since the distributions are random normals centered at 0, each byte has nontrivial behavior.

Additional types

byte_stream_split_extended.gzip.parquet is generated by pyarrow 16.0.0. It contains 7 pairs of columns, each in two variants containing the same values: one PLAIN-encoded and one BYTE_STREAM_SPLIT-encoded:

Version: 2.6
Created By: parquet-cpp-arrow version 16.0.0-SNAPSHOT
Total rows: 200
Number of RowGroups: 1
Number of Real Columns: 14
Number of Columns: 14
Number of Selected Columns: 14
Column 0: float16_plain (FIXED_LEN_BYTE_ARRAY(2) / Float16)
Column 1: float16_byte_stream_split (FIXED_LEN_BYTE_ARRAY(2) / Float16)
Column 2: float_plain (FLOAT)
Column 3: float_byte_stream_split (FLOAT)
Column 4: double_plain (DOUBLE)
Column 5: double_byte_stream_split (DOUBLE)
Column 6: int32_plain (INT32)
Column 7: int32_byte_stream_split (INT32)
Column 8: int64_plain (INT64)
Column 9: int64_byte_stream_split (INT64)
Column 10: flba5_plain (FIXED_LEN_BYTE_ARRAY(5))
Column 11: flba5_byte_stream_split (FIXED_LEN_BYTE_ARRAY(5))
Column 12: decimal_plain (FIXED_LEN_BYTE_ARRAY(4) / Decimal(precision=7, scale=3) / DECIMAL(7,3))
Column 13: decimal_byte_stream_split (FIXED_LEN_BYTE_ARRAY(4) / Decimal(precision=7, scale=3) / DECIMAL(7,3))

To check conformance of a BYTE_STREAM_SPLIT decoder, read each BYTE_STREAM_SPLIT-encoded column and compare the decoded values against the values from the corresponding PLAIN-encoded column. The values should be equal.