blob: 35e3365912dd31c6a50908aa04a5f5d62a925114 [file] [log] [blame]
/****************************************************************************
* arch/arm/src/samv7/sam_serial.c
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership. The
* ASF licenses this file to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance with the
* License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
****************************************************************************/
/****************************************************************************
* Included Files
****************************************************************************/
#include <nuttx/config.h>
#include <sys/types.h>
#include <stdint.h>
#include <stdbool.h>
#include <unistd.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include <debug.h>
#ifdef CONFIG_SERIAL_TERMIOS
# include <termios.h>
#endif
#include <nuttx/irq.h>
#include <nuttx/arch.h>
#include <nuttx/fs/ioctl.h>
#include <nuttx/serial/serial.h>
#include <nuttx/signal.h>
#include <arch/board/board.h>
#include "arm_internal.h"
#include "sam_config.h"
#include "hardware/sam_pinmap.h"
#include "hardware/sam_uart.h"
#include "hardware/sam_xdmac.h"
#include "sam_xdmac.h"
#include "sam_gpio.h"
#include "sam_serial.h"
/****************************************************************************
* Pre-processor Definitions
****************************************************************************/
#ifdef USE_SERIALDRIVER
/* DMA Configuration */
#if defined(CONFIG_USART0_RXDMA) || defined(CONFIG_USART1_RXDMA) || \
defined(CONFIG_USART2_RXDMA) || defined(CONFIG_UART0_RXDMA) || \
defined(CONFIG_UART1_RXDMA) || defined(CONFIG_UART2_RXDMA) || \
defined(CONFIG_UART3_RXDMA) || defined(CONFIG_UART4_RXDMA)
# define SERIAL_HAVE_RXDMA
#else
# undef SERIAL_HAVE_RXDMA
#endif
#if defined(SERIAL_HAVE_RXDMA) && !defined(CONFIG_SAMV7_XDMAC)
# error SERIAL DMA requires CONFIG_SAMV7_XDMAC to be selected
#endif
#if defined(CONFIG_USART0_TXDMA) || defined(CONFIG_USART1_TXDMA) || \
defined(CONFIG_USART2_TXDMA) || defined(CONFIG_UART0_TXDMA) || \
defined(CONFIG_UART1_TXDMA) || defined(CONFIG_UART2_TXDMA) || \
defined(CONFIG_UART3_TXDMA) || defined(CONFIG_UART4_TXDMA)
# define SERIAL_HAVE_TXDMA
#else
# undef SERIAL_HAVE_TXDMA
#endif
#if defined(SERIAL_HAVE_TXDMA) && !defined(CONFIG_SAMV7_XDMAC)
# error SERIAL DMA requires CONFIG_SAMV7_XDMAC to be selected
#endif
#if defined(SERIAL_HAVE_TXDMA) && !defined(CONFIG_SCHED_WORKQUEUE)
# error Work queue support is required (CONFIG_SCHED_WORKQUEUE)
#elif defined(SERIAL_HAVE_TXDMA) && !defined(CONFIG_SCHED_HPWORK)
# error Hi-priority work queue support is required (CONFIG_SCHED_HPWORK)
#endif
#ifdef SERIAL_HAVE_CONSOLE_DMA
# error DMA for serial console is currently not supported.
#endif
#ifndef CONFIG_SAMV7_SERIAL_DMA_TIMEOUT
# define CONFIG_SAMV7_SERIAL_DMA_TIMEOUT 0
#endif
#ifdef SERIAL_HAVE_RXDMA
# define DMA_RXFLAGS (DMACH_FLAG_FIFOCFG_LARGEST | \
DMACH_FLAG_PERIPHH2SEL | DMACH_FLAG_PERIPHISPERIPH | \
DMACH_FLAG_PERIPHWIDTH_32BITS | DMACH_FLAG_PERIPHCHUNKSIZE_1 | \
DMACH_FLAG_MEMPID_MAX | DMACH_FLAG_MEMAHB_AHB_IF0 | \
DMACH_FLAG_PERIPHAHB_AHB_IF1 | DMACH_FLAG_MEMWIDTH_32BITS | \
DMACH_FLAG_MEMINCREMENT | DMACH_FLAG_MEMCHUNKSIZE_1 | \
DMACH_FLAG_MEMBURST_1)
/* The DMA buffer size when using RX DMA to emulate a FIFO.
*
* When streaming data, the generic serial layer will be called
* every time the FIFO receives half this number of bytes.
*/
# ifndef CONFIG_SAMV7_SERIAL_RXDMA_BUFFER
# define CONFIG_SAMV7_SERIAL_RXDMA_BUFFER 128
# endif
#define RXDMA_CACHE_SIZE (ARMV7M_DCACHE_LINESIZE/sizeof(uint32_t))
#define RXDMA_MUTIPLE (sizeof(uint32_t) > RXDMA_CACHE_SIZE ? \
sizeof(uint32_t) : RXDMA_CACHE_SIZE)
#define RXDMA_MUTIPLE_MASK (RXDMA_MUTIPLE - 1)
#define RXDMA_BUFFER_SIZE ((CONFIG_SAMV7_SERIAL_RXDMA_BUFFER \
+ RXDMA_MUTIPLE_MASK) \
& ~RXDMA_MUTIPLE_MASK)
#endif /* SERIAL_HAVE_RXDMA */
#ifdef SERIAL_HAVE_TXDMA
# define DMA_TXFLAGS (DMACH_FLAG_FIFOCFG_LARGEST | \
DMACH_FLAG_PERIPHH2SEL | DMACH_FLAG_PERIPHISPERIPH | \
DMACH_FLAG_PERIPHWIDTH_8BITS | DMACH_FLAG_PERIPHCHUNKSIZE_1 | \
DMACH_FLAG_MEMPID_MAX | DMACH_FLAG_MEMAHB_AHB_IF0 | \
DMACH_FLAG_PERIPHAHB_AHB_IF1 | DMACH_FLAG_MEMWIDTH_8BITS | \
DMACH_FLAG_MEMINCREMENT | DMACH_FLAG_MEMCHUNKSIZE_1 | \
DMACH_FLAG_MEMBURST_1)
#endif /* SERIAL_HAVE_TXDMA */
/* Which UART/USART with be tty0/console and which tty1-7? */
/* First pick the console and ttys0. This could be any of UART0-4,
* USART0-2
*/
#if defined(CONFIG_UART0_SERIAL_CONSOLE)
# define CONSOLE_DEV g_uart0port /* UART0 is console */
# define TTYS0_DEV g_uart0port /* UART0 is ttyS0 */
# define UART0_ASSIGNED 1
#elif defined(CONFIG_UART1_SERIAL_CONSOLE)
# define CONSOLE_DEV g_uart1port /* UART1 is console */
# define TTYS0_DEV g_uart1port /* UART1 is ttyS0 */
# define UART1_ASSIGNED 1
#elif defined(CONFIG_UART2_SERIAL_CONSOLE)
# define CONSOLE_DEV g_uart2port /* UART2 is console */
# define TTYS0_DEV g_uart2port /* UART2 is ttyS0 */
# define UART2_ASSIGNED 1
#elif defined(CONFIG_UART3_SERIAL_CONSOLE)
# define CONSOLE_DEV g_uart3port /* UART3 is console */
# define TTYS0_DEV g_uart3port /* UART3 is ttyS0 */
# define UART3_ASSIGNED 1
#elif defined(CONFIG_UART4_SERIAL_CONSOLE)
# define CONSOLE_DEV g_uart4port /* UART4 is console */
# define TTYS0_DEV g_uart4port /* UART4 is ttyS0 */
# define UART4_ASSIGNED 1
#elif defined(CONFIG_USART0_SERIAL_CONSOLE)
# define CONSOLE_DEV g_usart0port /* USART0 is console */
# define TTYS0_DEV g_usart0port /* USART0 is ttyS0 */
# define USART0_ASSIGNED 1
#elif defined(CONFIG_USART1_SERIAL_CONSOLE)
# define CONSOLE_DEV g_usart1port /* USART1 is console */
# define TTYS0_DEV g_usart1port /* USART1 is ttyS0 */
# define USART1_ASSIGNED 1
#elif defined(CONFIG_USART2_SERIAL_CONSOLE)
# define CONSOLE_DEV g_usart2port /* USART2 is console */
# define TTYS0_DEV g_usart2port /* USART2 is ttyS0 */
# define USART2_ASSIGNED 1
#else
# undef CONSOLE_DEV /* No console */
# if defined(CONFIG_SAMV7_UART0)
# define TTYS0_DEV g_uart0port /* UART0 is ttyS0 */
# define UART0_ASSIGNED 1
# elif defined(CONFIG_SAMV7_UART1)
# define TTYS0_DEV g_uart1port /* UART1 is ttyS0 */
# define UART1_ASSIGNED 1
# elif defined(CONFIG_SAMV7_UART2)
# define TTYS0_DEV g_uart2port /* UART2 is ttyS0 */
# define UART2_ASSIGNED 1
# elif defined(CONFIG_SAMV7_UART3)
# define TTYS0_DEV g_uart3port /* UART3 is ttyS0 */
# define UART3_ASSIGNED 1
# elif defined(CONFIG_SAMV7_UART4)
# define TTYS0_DEV g_uart4port /* UART4 is ttyS0 */
# define UART4_ASSIGNED 1
# elif defined(CONFIG_SAMV7_USART0) && defined(CONFIG_USART0_SERIALDRIVER)
# define TTYS0_DEV g_usart0port /* USART0 is ttyS0 */
# define USART0_ASSIGNED 1
# elif defined(CONFIG_SAMV7_USART1) && defined(CONFIG_USART1_SERIALDRIVER)
# define TTYS0_DEV g_usart1port /* USART1 is ttyS0 */
# define USART1_ASSIGNED 1
# elif defined(CONFIG_SAMV7_USART2) && defined(CONFIG_USART2_SERIALDRIVER)
# define TTYS0_DEV g_usart2port /* USART2 is ttyS0 */
# define USART2_ASSIGNED 1
# endif
#endif
/* Pick ttys1. This could be any of UART0-4, USART0-2 excluding the console
* UART.
*/
#if defined(CONFIG_SAMV7_UART0) && defined(CONFIG_UART0_SERIALDRIVER) && \
!defined(UART0_ASSIGNED)
# define TTYS1_DEV g_uart0port /* UART0 is ttyS1 */
# define UART0_ASSIGNED 1
#elif defined(CONFIG_SAMV7_UART1) && defined(CONFIG_UART1_SERIALDRIVER) && \
!defined(UART1_ASSIGNED)
# define TTYS1_DEV g_uart1port /* UART1 is ttyS1 */
# define UART1_ASSIGNED 1
#elif defined(CONFIG_SAMV7_UART2) && defined(CONFIG_UART2_SERIALDRIVER) && \
!defined(UART2_ASSIGNED)
# define TTYS1_DEV g_uart2port /* UART2 is ttyS1 */
# define UART2_ASSIGNED 1
#elif defined(CONFIG_SAMV7_UART3) && defined(CONFIG_UART3_SERIALDRIVER) && \
!defined(UART3_ASSIGNED)
# define TTYS1_DEV g_uart3port /* UART3 is ttyS1 */
# define UART3_ASSIGNED 1
#elif defined(CONFIG_SAMV7_UART4) && defined(CONFIG_UART4_SERIALDRIVER) && \
!defined(UART4_ASSIGNED)
# define TTYS1_DEV g_uart4port /* UART4 is ttyS1 */
# define UART4_ASSIGNED 1
#elif defined(CONFIG_SAMV7_USART0) && defined(CONFIG_USART0_SERIALDRIVER) && \
!defined(USART0_ASSIGNED)
# define TTYS1_DEV g_usart0port /* USART0 is ttyS1 */
# define USART0_ASSIGNED 1
#elif defined(CONFIG_SAMV7_USART1) && defined(CONFIG_USART1_SERIALDRIVER) && \
!defined(USART1_ASSIGNED)
# define TTYS1_DEV g_usart1port /* USART1 is ttyS1 */
# define USART1_ASSIGNED 1
#elif defined(CONFIG_SAMV7_USART2) && defined(CONFIG_USART2_SERIALDRIVER) && \
!defined(USART2_ASSIGNED)
# define TTYS1_DEV g_usart2port /* USART2 is ttyS1 */
# define USART2_ASSIGNED 1
#endif
/* Pick ttys2. This could be one of UART1-4 or USART0-1. It can't be UART0
* because that was either assigned as ttyS0 or ttys1. One of these
* could also be the console.
*/
#if defined(CONFIG_SAMV7_UART1) && defined(CONFIG_UART1_SERIALDRIVER) && \
!defined(UART1_ASSIGNED)
# define TTYS2_DEV g_uart1port /* UART1 is ttyS2 */
# define UART1_ASSIGNED 1
#elif defined(CONFIG_SAMV7_UART2) && defined(CONFIG_UART2_SERIALDRIVER) && \
!defined(UART2_ASSIGNED)
# define TTYS2_DEV g_uart2port /* UART2 is ttyS2 */
# define UART2_ASSIGNED 1
#elif defined(CONFIG_SAMV7_UART3) && defined(CONFIG_UART3_SERIALDRIVER) && \
!defined(UART3_ASSIGNED)
# define TTYS2_DEV g_uart3port /* UART3 is ttyS2 */
# define UART3_ASSIGNED 1
#elif defined(CONFIG_SAMV7_UART4) && defined(CONFIG_UART4_SERIALDRIVER) && \
!defined(UART4_ASSIGNED)
# define TTYS2_DEV g_uart4port /* UART4 is ttyS2 */
# define UART4_ASSIGNED 1
#elif defined(CONFIG_SAMV7_USART0) && defined(CONFIG_USART0_SERIALDRIVER) && \
!defined(USART0_ASSIGNED)
# define TTYS2_DEV g_usart0port /* USART0 is ttyS2 */
# define USART0_ASSIGNED 1
#elif defined(CONFIG_SAMV7_USART1) && defined(CONFIG_USART1_SERIALDRIVER) && \
!defined(USART1_ASSIGNED)
# define TTYS2_DEV g_usart1port /* USART1 is ttyS2 */
# define USART1_ASSIGNED 1
#elif defined(CONFIG_SAMV7_USART2) && defined(CONFIG_USART2_SERIALDRIVER) && \
!defined(USART2_ASSIGNED)
# define TTYS2_DEV g_usart2port /* USART2 is ttyS2 */
# define USART2_ASSIGNED 1
#endif
/* Pick ttys3. This could be one of UART2-4 or USART0-2. It can't be UART0-1
* because those have already been assigned to ttsyS0, 1, or 2. One of
* these could also be the console.
*/
#if defined(CONFIG_SAMV7_UART2) && defined(CONFIG_UART2_SERIALDRIVER) && \
!defined(UART2_ASSIGNED)
# define TTYS3_DEV g_uart2port /* UART2 is ttyS3 */
# define UART2_ASSIGNED 1
#elif defined(CONFIG_SAMV7_UART3) && defined(CONFIG_UART3_SERIALDRIVER) && \
!defined(UART3_ASSIGNED)
# define TTYS3_DEV g_uart3port /* UART3 is ttyS3 */
# define UART3_ASSIGNED 1
#elif defined(CONFIG_SAMV7_UART4) && defined(CONFIG_UART4_SERIALDRIVER) && \
!defined(UART4_ASSIGNED)
# define TTYS3_DEV g_uart4port /* UART4 is ttyS3 */
# define UART4_ASSIGNED 1
#elif defined(CONFIG_SAMV7_USART0) && defined(CONFIG_USART0_SERIALDRIVER) && \
!defined(USART0_ASSIGNED)
# define TTYS3_DEV g_usart0port /* USART0 is ttyS3 */
# define USART0_ASSIGNED 1
#elif defined(CONFIG_SAMV7_USART1) && defined(CONFIG_USART1_SERIALDRIVER) && \
!defined(USART1_ASSIGNED)
# define TTYS3_DEV g_usart1port /* USART1 is ttyS3 */
# define USART1_ASSIGNED 1
#elif defined(CONFIG_SAMV7_USART2) && defined(CONFIG_USART2_SERIALDRIVER) && \
!defined(USART2_ASSIGNED)
# define TTYS3_DEV g_usart2port /* USART2 is ttyS3 */
# define USART2_ASSIGNED 1
#endif
/* Pick ttys4. This could be one of UART3-4 or USART0-2. It can't be UART0-2
* because those have already been assigned to ttsyS0, 1, 2 or 3. One of
* these could also be the console.
*/
#if defined(CONFIG_SAMV7_UART3) && defined(CONFIG_UART3_SERIALDRIVER) && \
!defined(UART3_ASSIGNED)
# define TTYS4_DEV g_uart3port /* UART3 is ttyS4 */
# define UART3_ASSIGNED 1
#elif defined(CONFIG_SAMV7_UART4) && defined(CONFIG_UART4_SERIALDRIVER) && \
!defined(UART4_ASSIGNED)
# define TTYS4_DEV g_uart4port /* UART4 is ttyS4 */
# define UART4_ASSIGNED 1
#elif defined(CONFIG_SAMV7_USART0) && defined(CONFIG_USART0_SERIALDRIVER) && \
!defined(USART0_ASSIGNED)
# define TTYS4_DEV g_usart0port /* USART0 is ttyS4 */
# define USART0_ASSIGNED 1
#elif defined(CONFIG_SAMV7_USART1) && defined(CONFIG_USART1_SERIALDRIVER) && \
!defined(USART1_ASSIGNED)
# define TTYS4_DEV g_usart1port /* USART1 is ttyS4 */
# define USART1_ASSIGNED 1
#elif defined(CONFIG_SAMV7_USART2) && defined(CONFIG_USART2_SERIALDRIVER) && \
!defined(USART2_ASSIGNED)
# define TTYS4_DEV g_usart2port /* USART2 is ttyS4 */
# define USART2_ASSIGNED 1
#endif
/* Pick ttys5. This could be one of UART4 or USART0-2. It can't be UART0-3
* because those have already been assigned to ttsyS0, 1, 2, 3 or 4. One
* of these could also be the console.
*/
#if defined(CONFIG_SAMV7_UART4) && defined(CONFIG_UART4_SERIALDRIVER) && \
!defined(UART4_ASSIGNED)
# define TTYS5_DEV g_uart4port /* UART4 is ttyS5 */
# define UART4_ASSIGNED 1
#elif defined(CONFIG_SAMV7_USART0) && defined(CONFIG_USART0_SERIALDRIVER) && \
!defined(USART0_ASSIGNED)
# define TTYS5_DEV g_usart0port /* USART0 is ttyS5 */
# define USART0_ASSIGNED 1
#elif defined(CONFIG_SAMV7_USART1) && defined(CONFIG_USART1_SERIALDRIVER) && \
!defined(USART1_ASSIGNED)
# define TTYS5_DEV g_usart1port /* USART1 is ttyS5 */
# define USART1_ASSIGNED 1
#elif defined(CONFIG_SAMV7_USART2) && defined(CONFIG_USART2_SERIALDRIVER) && \
!defined(USART2_ASSIGNED)
# define TTYS5_DEV g_usart2port /* USART2 is ttyS5 */
# define USART2_ASSIGNED 1
#endif
/* Pick ttys6. This could be one of USART0-2. It can't be UART0-4
* because those have already been assigned to ttsyS0-5. One of
* One of USART0-2 could also be the console.
*/
#if defined(CONFIG_SAMV7_USART0) && defined(CONFIG_USART0_SERIALDRIVER) && \
!defined(USART0_ASSIGNED)
# define TTYS6_DEV g_usart0port /* USART0 is ttyS6 */
# define USART0_ASSIGNED 1
#elif defined(CONFIG_SAMV7_USART1) && defined(CONFIG_USART1_SERIALDRIVER) && \
!defined(USART1_ASSIGNED)
# define TTYS6_DEV g_usart1port /* USART1 is ttyS6 */
# define USART1_ASSIGNED 1
#elif defined(CONFIG_SAMV7_USART2) && defined(CONFIG_USART2_SERIALDRIVER) && \
!defined(USART2_ASSIGNED)
# define TTYS6_DEV g_usart2port /* USART2 is ttyS6 */
# define USART2_ASSIGNED 1
#endif
/* Pick ttys7. This could be one of USART1-2. It can't be UART0-4
* or USART 1 because those have already been assigned to ttsyS0-6.
* One of USART1-2 could also be the console.
*/
#if defined(CONFIG_SAMV7_USART1) && defined(CONFIG_USART1_SERIALDRIVER) && \
!defined(USART1_ASSIGNED)
# define TTYS7_DEV g_usart1port /* USART1 is ttyS7 */
# define USART1_ASSIGNED 1
#elif defined(CONFIG_SAMV7_USART2) && defined(CONFIG_USART2_SERIALDRIVER) && \
!defined(USART2_ASSIGNED)
# define TTYS7_DEV g_usart2port /* USART2 is ttyS7 */
# define USART2_ASSIGNED 1
#endif
/* BAUD definitions
*
* The source clock is selectable and could be one of:
*
* - The peripheral clock
* - A division of the peripheral clock, where the divider is product-
* dependent, but generally set to 8
* - A processor/peripheral independent clock source fully programmable
* provided by PMC (PCK)
* - The external clock, available on the SCK pin
*
* Only the first two options are supported by this driver. The divided
* peripheral clock is only used for very low BAUD selections.
*/
#define FAST_USART_CLOCK BOARD_MCK_FREQUENCY
#define SLOW_USART_CLOCK (BOARD_MCK_FREQUENCY >> 3)
/****************************************************************************
* Private Types
****************************************************************************/
struct sam_dev_s
{
struct uart_dev_s dev; /* Generic UART device */
const uint32_t usartbase; /* Base address of USART registers */
uint32_t baud; /* Configured baud */
uint32_t sr; /* Saved status bits */
uint8_t irq; /* IRQ associated with this USART */
uint8_t pid; /* Peripheral PID */
uint8_t parity; /* 0=none, 1=odd, 2=even */
uint8_t bits; /* Number of bits (5-9) */
bool stopbits2; /* true: Configure with 2 stop bits instead of 1 */
#if defined(CONFIG_SERIAL_IFLOWCONTROL) || defined(CONFIG_SERIAL_OFLOWCONTROL)
bool flowc; /* input flow control (RTS) enabled */
#endif
bool has_rxdma; /* True if RX DMA is enabled */
bool has_rxdma_idle;
bool has_txdma;
bool has_rs485; /* True if RS-485 mode is enabled */
#ifdef SERIAL_HAVE_RS485
uint32_t rs485_dir_gpio; /* RS-485 RTS pin */
#endif
/* RX DMA state */
#ifdef SERIAL_HAVE_RXDMA
const unsigned int rxdma_channel; /* DMA channel assigned */
DMA_HANDLE rxdma; /* currently-open receive DMA stream */
bool rxenable; /* DMA-based reception en/disable */
bool odd; /* True if odd buffer is used */
uint8_t buf_idx; /* 0 or 1, points to the correct buffer */
uint32_t nextcache; /* Next byte in data cache to be invalidated */
uint32_t rxdmanext; /* Next byte in the DMA buffer to be read */
uint32_t * const rxbuf[2]; /* Receive DMA buffer */
struct chnext_view1_s *desc[2];
#endif
/* TX DMA state */
#ifdef SERIAL_HAVE_TXDMA
const unsigned int txdma_channel; /* DMA channel assigned */
DMA_HANDLE txdma; /* currently-open receive DMA stream */
struct work_s work; /* Supports txavailable worker */
sem_t txdma_sem;
#endif
};
/****************************************************************************
* Private Function Prototypes
****************************************************************************/
static int sam_setup(struct uart_dev_s *dev);
static void sam_shutdown(struct uart_dev_s *dev);
static int sam_attach(struct uart_dev_s *dev);
static void sam_detach(struct uart_dev_s *dev);
static int sam_interrupt(int irq, void *context, void *arg);
static int sam_ioctl(struct file *filep, int cmd, unsigned long arg);
#ifdef SERIAL_HAVE_NORXDMA_OPS
static int sam_receive(struct uart_dev_s *dev, unsigned int *status);
static void sam_rxint(struct uart_dev_s *dev, bool enable);
static bool sam_rxavailable(struct uart_dev_s *dev);
#endif
static void sam_send(struct uart_dev_s *dev, int ch);
#ifdef SERIAL_HAVE_NOTXDMA_OPS
static void sam_txint(struct uart_dev_s *dev, bool enable);
static bool sam_txready(struct uart_dev_s *dev);
static bool sam_txempty(struct uart_dev_s *dev);
#endif
#if defined(SERIAL_HAVE_RXDMA) || defined(SERIAL_HAVE_TXDMA)
static int sam_dma_setup(struct uart_dev_s *dev);
static void sam_dma_shutdown(struct uart_dev_s *dev);
#endif
#ifdef SERIAL_HAVE_RXDMA
static int sam_dma_receive(struct uart_dev_s *dev, unsigned int *status);
static void sam_dma_rxint(struct uart_dev_s *dev, bool enable);
static bool sam_dma_rxavailable(struct uart_dev_s *dev);
static void sam_dma_rxcallback(DMA_HANDLE handle, void *arg, int status);
#endif
#ifdef SERIAL_HAVE_TXDMA
static void sam_dma_send(struct uart_dev_s *dev);
static void sam_dma_txint(struct uart_dev_s *dev, bool enable);
static void sam_dma_txavailable(struct uart_dev_s *dev);
static void sam_dma_txcallback(DMA_HANDLE handle, void *arg, int status);
#endif
/****************************************************************************
* Private Data
****************************************************************************/
/* No DMA */
#ifdef SERIAL_HAVE_NODMA_OPS
static const struct uart_ops_s g_uart_ops =
{
.setup = sam_setup,
.shutdown = sam_shutdown,
.attach = sam_attach,
.detach = sam_detach,
.ioctl = sam_ioctl,
.receive = sam_receive,
.rxint = sam_rxint,
.rxavailable = sam_rxavailable,
#ifdef CONFIG_SERIAL_IFLOWCONTROL
.rxflowcontrol = NULL,
#endif
.send = sam_send,
.txint = sam_txint,
.txready = sam_txready,
.txempty = sam_txempty,
};
#endif
/* RX DMA is defined */
#ifdef SERIAL_HAVE_RXDMA_OPS
static const struct uart_ops_s g_uart_rxdma_ops =
{
.setup = sam_dma_setup,
.shutdown = sam_dma_shutdown,
.attach = sam_attach,
.detach = sam_detach,
.ioctl = sam_ioctl,
.receive = sam_dma_receive,
.rxint = sam_dma_rxint,
.rxavailable = sam_dma_rxavailable,
#ifdef CONFIG_SERIAL_IFLOWCONTROL
.rxflowcontrol = NULL,
#endif
.send = sam_send,
.txint = sam_txint,
.txready = sam_txready,
.txempty = sam_txready,
};
#endif
/* TX DMA is defined */
#ifdef SERIAL_HAVE_TXDMA_OPS
static const struct uart_ops_s g_uart_txdma_ops =
{
.setup = sam_dma_setup,
.shutdown = sam_dma_shutdown,
.attach = sam_attach,
.detach = sam_detach,
.ioctl = sam_ioctl,
.receive = sam_receive,
.rxint = sam_rxint,
.rxavailable = sam_rxavailable,
#ifdef CONFIG_SERIAL_IFLOWCONTROL
.rxflowcontrol = NULL,
#endif
.send = sam_send,
.txint = sam_dma_txint,
.txready = sam_txready,
.txempty = sam_txready,
.dmatxavail = sam_dma_txavailable,
.dmasend = sam_dma_send,
};
#endif
#ifdef SERIAL_HAVE_RXTXDMA_OPS
static const struct uart_ops_s g_uart_rxtxdma_ops =
{
.setup = sam_dma_setup,
.shutdown = sam_dma_shutdown,
.attach = sam_attach,
.detach = sam_detach,
.ioctl = sam_ioctl,
.receive = sam_dma_receive,
.rxint = sam_dma_rxint,
.rxavailable = sam_dma_rxavailable,
#ifdef CONFIG_SERIAL_IFLOWCONTROL
.rxflowcontrol = NULL,
#endif
.send = sam_send,
.txint = sam_dma_txint,
.txready = sam_txready,
.txempty = sam_txready,
.dmatxavail = sam_dma_txavailable,
.dmasend = sam_dma_send,
};
#endif
/* I/O buffers */
#if defined(CONFIG_SAMV7_UART0) && defined(CONFIG_UART0_SERIALDRIVER)
static char g_uart0rxbuffer[CONFIG_UART0_RXBUFSIZE];
static char g_uart0txbuffer[CONFIG_UART0_TXBUFSIZE];
# ifdef CONFIG_UART0_RXDMA
static uint32_t g_uart0rxbuf[2][RXDMA_BUFFER_SIZE]
aligned_data(ARMV7M_DCACHE_LINESIZE);
static struct chnext_view1_s g_uart0rxdesc[2];
# endif
#endif
#if defined(CONFIG_SAMV7_UART1) && defined(CONFIG_UART1_SERIALDRIVER)
static char g_uart1rxbuffer[CONFIG_UART1_RXBUFSIZE];
static char g_uart1txbuffer[CONFIG_UART1_TXBUFSIZE];
# ifdef CONFIG_UART1_RXDMA
static uint32_t g_uart1rxbuf[2][RXDMA_BUFFER_SIZE]
aligned_data(ARMV7M_DCACHE_LINESIZE);
static struct chnext_view1_s g_uart1rxdesc[2];
# endif
#endif
#if defined(CONFIG_SAMV7_UART2) && defined(CONFIG_UART2_SERIALDRIVER)
static char g_uart2rxbuffer[CONFIG_UART2_RXBUFSIZE];
static char g_uart2txbuffer[CONFIG_UART2_TXBUFSIZE];
# ifdef CONFIG_UART2_RXDMA
static uint32_t g_uart2rxbuf[2][RXDMA_BUFFER_SIZE]
aligned_data(ARMV7M_DCACHE_LINESIZE);
static struct chnext_view1_s g_uart2rxdesc[2];
# endif
#endif
#if defined(CONFIG_SAMV7_UART3) && defined(CONFIG_UART3_SERIALDRIVER)
static char g_uart3rxbuffer[CONFIG_UART3_RXBUFSIZE];
static char g_uart3txbuffer[CONFIG_UART3_TXBUFSIZE];
# ifdef CONFIG_UART3_RXDMA
static uint32_t g_uart3rxbuf[2][RXDMA_BUFFER_SIZE]
aligned_data(ARMV7M_DCACHE_LINESIZE);
static struct chnext_view1_s g_uart3rxdesc[2];
# endif
#endif
#if defined(CONFIG_SAMV7_UART4) && defined(CONFIG_UART4_SERIALDRIVER)
static char g_uart4rxbuffer[CONFIG_UART4_RXBUFSIZE];
static char g_uart4txbuffer[CONFIG_UART4_TXBUFSIZE];
# ifdef CONFIG_UART4_RXDMA
static uint32_t g_uart4rxbuf[2][RXDMA_BUFFER_SIZE]
aligned_data(ARMV7M_DCACHE_LINESIZE);
static struct chnext_view1_s g_uart4rxdesc[2];
# endif
#endif
#if defined(CONFIG_SAMV7_USART0) && defined(CONFIG_USART0_SERIALDRIVER)
static char g_usart0rxbuffer[CONFIG_USART0_RXBUFSIZE];
static char g_usart0txbuffer[CONFIG_USART0_TXBUFSIZE];
# ifdef CONFIG_USART0_RXDMA
static uint32_t g_usart0rxbuf[2][RXDMA_BUFFER_SIZE]
aligned_data(ARMV7M_DCACHE_LINESIZE);
static struct chnext_view1_s g_usart0rxdesc[2];
# endif
#endif
#if defined(CONFIG_SAMV7_USART1) && defined(CONFIG_USART1_SERIALDRIVER)
static char g_usart1rxbuffer[CONFIG_USART1_RXBUFSIZE];
static char g_usart1txbuffer[CONFIG_USART1_TXBUFSIZE];
# ifdef CONFIG_USART1_RXDMA
static uint32_t g_usart1rxbuf[2][RXDMA_BUFFER_SIZE]
aligned_data(ARMV7M_DCACHE_LINESIZE);
static struct chnext_view1_s g_usart1rxdesc[2];
# endif
#endif
#if defined(CONFIG_SAMV7_USART2) && defined(CONFIG_USART2_SERIALDRIVER)
static char g_usart2rxbuffer[CONFIG_USART2_RXBUFSIZE];
static char g_usart2txbuffer[CONFIG_USART2_TXBUFSIZE];
# ifdef CONFIG_USART2_RXDMA
static uint32_t g_usart2rxbuf[2][RXDMA_BUFFER_SIZE]
aligned_data(ARMV7M_DCACHE_LINESIZE);
static struct chnext_view1_s g_usart2rxdesc[2];
# endif
#endif
/* This describes the state of the UART0 port. */
#if defined(CONFIG_SAMV7_UART0) && defined(CONFIG_UART0_SERIALDRIVER)
static struct sam_dev_s g_uart0priv =
{
.usartbase = SAM_UART0_BASE,
.baud = CONFIG_UART0_BAUD,
.irq = SAM_IRQ_UART0,
.pid = SAM_PID_UART0,
.parity = CONFIG_UART0_PARITY,
.bits = CONFIG_UART0_BITS,
.stopbits2 = CONFIG_UART0_2STOP,
# ifdef CONFIG_UART0_RXDMA
.buf_idx = 0,
.nextcache = 0,
.rxbuf =
{
g_uart0rxbuf[0], g_uart0rxbuf[1]
},
.desc =
{
&g_uart0rxdesc[0], &g_uart0rxdesc[1]
},
.has_rxdma = true,
# endif
# ifdef CONFIG_UART0_TXDMA
.has_txdma = true,
# endif
};
static uart_dev_t g_uart0port =
{
.recv =
{
.size = CONFIG_UART0_RXBUFSIZE,
.buffer = g_uart0rxbuffer,
},
.xmit =
{
.size = CONFIG_UART0_TXBUFSIZE,
.buffer = g_uart0txbuffer,
},
# if defined(CONFIG_UART0_RXDMA) && defined(CONFIG_UART0_TXDMA)
.ops = &g_uart_rxtxdma_ops,
# elif defined(CONFIG_UART0_RXDMA) && !defined(CONFIG_UART0_TXDMA)
.ops = &g_uart_rxdma_ops,
# elif !defined(CONFIG_UART0_RXDMA) && defined(CONFIG_UART0_TXDMA)
.ops = &g_uart_txdma_ops,
# else
.ops = &g_uart_ops,
# endif
.priv = &g_uart0priv,
};
#endif
/* This describes the state of the UART1 port. */
#if defined(CONFIG_SAMV7_UART1) && defined(CONFIG_UART1_SERIALDRIVER)
static struct sam_dev_s g_uart1priv =
{
.usartbase = SAM_UART1_BASE,
.baud = CONFIG_UART1_BAUD,
.irq = SAM_IRQ_UART1,
.pid = SAM_PID_UART1,
.parity = CONFIG_UART1_PARITY,
.bits = CONFIG_UART1_BITS,
.stopbits2 = CONFIG_UART1_2STOP,
# ifdef CONFIG_UART1_RXDMA
.buf_idx = 0,
.nextcache = 0,
.rxbuf =
{
g_uart1rxbuf[0], g_uart1rxbuf[1]
},
.desc =
{
&g_uart1rxdesc[0], &g_uart1rxdesc[1]
},
.has_rxdma = true,
# endif
# ifdef CONFIG_UART1_TXDMA
.has_txdma = true,
# endif
};
static uart_dev_t g_uart1port =
{
.recv =
{
.size = CONFIG_UART1_RXBUFSIZE,
.buffer = g_uart1rxbuffer,
},
.xmit =
{
.size = CONFIG_UART1_TXBUFSIZE,
.buffer = g_uart1txbuffer,
},
# if defined(CONFIG_UART1_RXDMA) && defined(CONFIG_UART1_TXDMA)
.ops = &g_uart_rxtxdma_ops,
# elif defined(CONFIG_UART1_RXDMA) && !defined(CONFIG_UART1_TXDMA)
.ops = &g_uart_rxdma_ops,
# elif !defined(CONFIG_UART1_RXDMA) && defined(CONFIG_UART1_TXDMA)
.ops = &g_uart_txdma_ops,
# else
.ops = &g_uart_ops,
# endif
.priv = &g_uart1priv,
};
#endif
/* This describes the state of the UART2 port. */
#if defined(CONFIG_SAMV7_UART2) && defined(CONFIG_UART2_SERIALDRIVER)
static struct sam_dev_s g_uart2priv =
{
.usartbase = SAM_UART2_BASE,
.baud = CONFIG_UART2_BAUD,
.irq = SAM_IRQ_UART2,
.pid = SAM_PID_UART2,
.parity = CONFIG_UART2_PARITY,
.bits = CONFIG_UART2_BITS,
.stopbits2 = CONFIG_UART2_2STOP,
# ifdef CONFIG_UART2_RXDMA
.buf_idx = 0,
.nextcache = 0,
.rxbuf =
{
g_uart2rxbuf[0], g_uart2rxbuf[1]
},
.desc =
{
&g_uart2rxdesc[0], &g_uart2rxdesc[1]
},
.has_rxdma = true,
# endif
# ifdef CONFIG_UART2_TXDMA
.has_txdma = true,
# endif
};
static uart_dev_t g_uart2port =
{
.recv =
{
.size = CONFIG_UART2_RXBUFSIZE,
.buffer = g_uart2rxbuffer,
},
.xmit =
{
.size = CONFIG_UART2_TXBUFSIZE,
.buffer = g_uart2txbuffer,
},
# if defined(CONFIG_UART2_RXDMA) && defined(CONFIG_UART2_TXDMA)
.ops = &g_uart_rxtxdma_ops,
# elif defined(CONFIG_UART2_RXDMA) && !defined(CONFIG_UART2_TXDMA)
.ops = &g_uart_rxdma_ops,
# elif !defined(CONFIG_UART2_RXDMA) && defined(CONFIG_UART2_TXDMA)
.ops = &g_uart_txdma_ops,
# else
.ops = &g_uart_ops,
# endif
.priv = &g_uart2priv,
};
#endif
/* This describes the state of the UART3 port. */
#if defined(CONFIG_SAMV7_UART3) && defined(CONFIG_UART3_SERIALDRIVER)
static struct sam_dev_s g_uart3priv =
{
.usartbase = SAM_UART3_BASE,
.baud = CONFIG_UART3_BAUD,
.irq = SAM_IRQ_UART3,
.pid = SAM_PID_UART3,
.parity = CONFIG_UART3_PARITY,
.bits = CONFIG_UART3_BITS,
.stopbits2 = CONFIG_UART3_2STOP,
# ifdef CONFIG_UART3_RXDMA
.buf_idx = 0,
.nextcache = 0,
.rxbuf =
{
g_uart3rxbuf[0], g_uart3rxbuf[1]
},
.desc =
{
&g_uart3rxdesc[0], &g_uart3rxdesc[1]
},
.has_rxdma = true,
# endif
# ifdef CONFIG_UART3_TXDMA
.has_txdma = true,
# endif
};
static uart_dev_t g_uart3port =
{
.recv =
{
.size = CONFIG_UART3_RXBUFSIZE,
.buffer = g_uart3rxbuffer,
},
.xmit =
{
.size = CONFIG_UART3_TXBUFSIZE,
.buffer = g_uart3txbuffer,
},
# if defined(CONFIG_UART3_RXDMA) && defined(CONFIG_UART3_TXDMA)
.ops = &g_uart_rxtxdma_ops,
# elif defined(CONFIG_UART3_RXDMA) && !defined(CONFIG_UART3_TXDMA)
.ops = &g_uart_rxdma_ops,
# elif !defined(CONFIG_UART3_RXDMA) && defined(CONFIG_UART3_TXDMA)
.ops = &g_uart_txdma_ops,
# else
.ops = &g_uart_ops,
# endif
.priv = &g_uart3priv,
};
#endif
/* This describes the state of the UART4 port. */
#if defined(CONFIG_SAMV7_UART4) && defined(CONFIG_UART4_SERIALDRIVER)
static struct sam_dev_s g_uart4priv =
{
.usartbase = SAM_UART4_BASE,
.baud = CONFIG_UART4_BAUD,
.irq = SAM_IRQ_UART4,
.pid = SAM_PID_UART4,
.parity = CONFIG_UART4_PARITY,
.bits = CONFIG_UART4_BITS,
.stopbits2 = CONFIG_UART4_2STOP,
# ifdef CONFIG_UART4_RXDMA
.buf_idx = 0,
.nextcache = 0,
.rxbuf =
{
g_uart4rxbuf[0], g_uart4rxbuf[1]
},
.desc =
{
&g_uart4rxdesc[0], &g_uart4rxdesc[1]
},
.has_rxdma = true,
# endif
# ifdef CONFIG_UART4_TXDMA
.has_txdma = true,
# endif
};
static uart_dev_t g_uart4port =
{
.recv =
{
.size = CONFIG_UART4_RXBUFSIZE,
.buffer = g_uart4rxbuffer,
},
.xmit =
{
.size = CONFIG_UART4_TXBUFSIZE,
.buffer = g_uart4txbuffer,
},
# if defined(CONFIG_UART4_RXDMA) && defined(CONFIG_UART4_TXDMA)
.ops = &g_uart_rxtxdma_ops,
# elif defined(CONFIG_UART4_RXDMA) && !defined(CONFIG_UART4_TXDMA)
.ops = &g_uart_rxdma_ops,
# elif !defined(CONFIG_UART4_RXDMA) && defined(CONFIG_UART4_TXDMA)
.ops = &g_uart_txdma_ops,
# else
.ops = &g_uart_ops,
# endif
.priv = &g_uart4priv,
};
#endif
/* This describes the state of the USART0 port. */
#if defined(CONFIG_SAMV7_USART0) && defined(CONFIG_USART0_SERIALDRIVER)
static struct sam_dev_s g_usart0priv =
{
.usartbase = SAM_USART0_BASE,
.baud = CONFIG_USART0_BAUD,
.irq = SAM_IRQ_USART0,
.pid = SAM_PID_USART0,
.parity = CONFIG_USART0_PARITY,
.bits = CONFIG_USART0_BITS,
.stopbits2 = CONFIG_USART0_2STOP,
# if defined(CONFIG_USART0_OFLOWCONTROL) || defined(CONFIG_USART0_IFLOWCONTROL)
.flowc = true,
# endif
# ifdef CONFIG_USART0_RXDMA
.buf_idx = 0,
.nextcache = 0,
.rxbuf =
{
g_usart0rxbuf[0], g_usart0rxbuf[1]
},
.desc =
{
&g_usart0rxdesc[0], &g_usart0rxdesc[1]
},
.has_rxdma = true,
.has_rxdma_idle = true,
# endif
# ifdef CONFIG_USART0_TXDMA
.has_txdma = true,
# endif
# ifdef CONFIG_SAMV7_USART0_RS485MODE
.has_rs485 = true,
.rs485_dir_gpio = GPIO_USART0_RTS,
# endif
};
static uart_dev_t g_usart0port =
{
.recv =
{
.size = CONFIG_USART0_RXBUFSIZE,
.buffer = g_usart0rxbuffer,
},
.xmit =
{
.size = CONFIG_USART0_TXBUFSIZE,
.buffer = g_usart0txbuffer,
},
# if defined(CONFIG_USART0_RXDMA) && defined(CONFIG_USART0_TXDMA)
.ops = &g_uart_rxtxdma_ops,
# elif defined(CONFIG_USART0_RXDMA) && !defined(CONFIG_USART0_TXDMA)
.ops = &g_uart_rxdma_ops,
# elif !defined(CONFIG_USART0_RXDMA) && defined(CONFIG_USART0_TXDMA)
.ops = &g_uart_txdma_ops,
# else
.ops = &g_uart_ops,
# endif
.priv = &g_usart0priv,
};
#endif
/* This describes the state of the USART1 port. */
#if defined(CONFIG_SAMV7_USART1) && defined(CONFIG_USART1_SERIALDRIVER)
static struct sam_dev_s g_usart1priv =
{
.usartbase = SAM_USART1_BASE,
.baud = CONFIG_USART1_BAUD,
.irq = SAM_IRQ_USART1,
.pid = SAM_PID_USART1,
.parity = CONFIG_USART1_PARITY,
.bits = CONFIG_USART1_BITS,
.stopbits2 = CONFIG_USART1_2STOP,
# if defined(CONFIG_USART1_OFLOWCONTROL) || defined(CONFIG_USART1_IFLOWCONTROL)
.flowc = true,
# endif
# ifdef CONFIG_USART1_RXDMA
.buf_idx = 0,
.nextcache = 0,
.rxbuf =
{
g_usart1rxbuf[0], g_usart1rxbuf[1]
},
.desc =
{
&g_usart1rxdesc[0], &g_usart1rxdesc[1]
},
.has_rxdma = true,
.has_rxdma_idle = true,
# endif
# ifdef CONFIG_USART1_TXDMA
.has_txdma = true,
# endif
# ifdef CONFIG_SAMV7_USART1_RS485MODE
.has_rs485 = true,
.rs485_dir_gpio = GPIO_USART1_RTS,
# endif
};
static uart_dev_t g_usart1port =
{
.recv =
{
.size = CONFIG_USART1_RXBUFSIZE,
.buffer = g_usart1rxbuffer,
},
.xmit =
{
.size = CONFIG_USART1_TXBUFSIZE,
.buffer = g_usart1txbuffer,
},
# if defined(CONFIG_USART1_RXDMA) && defined(CONFIG_USART1_TXDMA)
.ops = &g_uart_rxtxdma_ops,
# elif defined(CONFIG_USART1_RXDMA) && !defined(CONFIG_USART1_TXDMA)
.ops = &g_uart_rxdma_ops,
# elif !defined(CONFIG_USART1_RXDMA) && defined(CONFIG_USART1_TXDMA)
.ops = &g_uart_txdma_ops,
# else
.ops = &g_uart_ops,
# endif
.priv = &g_usart1priv,
};
#endif
/* This describes the state of the USART2 port. */
#if defined(CONFIG_SAMV7_USART2) && defined(CONFIG_USART2_SERIALDRIVER)
static struct sam_dev_s g_usart2priv =
{
.usartbase = SAM_USART2_BASE,
.baud = CONFIG_USART2_BAUD,
.irq = SAM_IRQ_USART2,
.pid = SAM_PID_USART2,
.parity = CONFIG_USART2_PARITY,
.bits = CONFIG_USART2_BITS,
.stopbits2 = CONFIG_USART2_2STOP,
# if defined(CONFIG_USART2_OFLOWCONTROL) || defined(CONFIG_USART2_IFLOWCONTROL)
.flowc = true,
# endif
# ifdef CONFIG_USART2_RXDMA
.buf_idx = 0,
.nextcache = 0,
.rxbuf =
{
g_usart2rxbuf[0], g_usart2rxbuf[1]
},
.desc =
{
&g_usart2rxdesc[0], &g_usart2rxdesc[1]
},
.has_rxdma = true,
.has_rxdma_idle = true,
# endif
# ifdef CONFIG_USART2_TXDMA
.has_txdma = true,
# endif
# ifdef CONFIG_SAMV7_USART2_RS485MODE
.has_rs485 = true,
.rs485_dir_gpio = GPIO_USART2_RTS,
# endif
};
static uart_dev_t g_usart2port =
{
.recv =
{
.size = CONFIG_USART2_RXBUFSIZE,
.buffer = g_usart2rxbuffer,
},
.xmit =
{
.size = CONFIG_USART2_TXBUFSIZE,
.buffer = g_usart2txbuffer,
},
# if defined(CONFIG_USART2_RXDMA) && defined(CONFIG_USART2_TXDMA)
.ops = &g_uart_rxtxdma_ops,
# elif defined(CONFIG_USART2_RXDMA) && !defined(CONFIG_USART2_TXDMA)
.ops = &g_uart_rxdma_ops,
# elif !defined(CONFIG_USART2_RXDMA) && defined(CONFIG_USART2_TXDMA)
.ops = &g_uart_txdma_ops,
# else
.ops = &g_uart_ops,
# endif
.priv = &g_usart2priv,
};
#endif
/****************************************************************************
* Private Functions
****************************************************************************/
/****************************************************************************
* Name: sam_serialin
****************************************************************************/
static inline uint32_t sam_serialin(struct sam_dev_s *priv, int offset)
{
return getreg32(priv->usartbase + offset);
}
/****************************************************************************
* Name: sam_serialout
****************************************************************************/
static inline void sam_serialout(struct sam_dev_s *priv, int offset,
uint32_t value)
{
putreg32(value, priv->usartbase + offset);
}
/****************************************************************************
* Name: sam_restoreusartint
****************************************************************************/
#ifdef CONFIG_SERIAL_TERMIOS
static inline void sam_restoreusartint(struct sam_dev_s *priv, uint32_t imr)
{
/* Restore the previous interrupt state (assuming all interrupts
* disabled)
*/
sam_serialout(priv, SAM_UART_IER_OFFSET, imr);
}
#endif
/****************************************************************************
* Name: sam_disableallints
****************************************************************************/
static void sam_disableallints(struct sam_dev_s *priv, uint32_t *imr)
{
irqstate_t flags;
/* The following must be atomic */
flags = enter_critical_section();
if (imr)
{
/* Return the current interrupt mask */
*imr = sam_serialin(priv, SAM_UART_IMR_OFFSET);
}
/* Disable all interrupts */
sam_serialout(priv, SAM_UART_IDR_OFFSET, UART_INT_ALLINTS);
leave_critical_section(flags);
}
/****************************************************************************
* Name: sam_dma_nextrx
*
* Description:
* Returns the index into the RX FIFO where the DMA will place the next
* byte that it receives.
*
****************************************************************************/
#ifdef SERIAL_HAVE_RXDMA
static int sam_dma_nextrx(struct sam_dev_s *priv)
{
uint32_t cda;
uint32_t ret;
/* Get the DMA destination address */
cda = sam_destaddr(priv->rxdma);
if (!priv->odd)
{
ret = (cda - (uint32_t)priv->rxbuf[0]) / sizeof(uint32_t);
if (cda >= ((uint32_t)priv->rxbuf[0] + (RXDMA_BUFFER_SIZE << 2)))
{
/* We are already in another buffer so we need to read the
* whole RXDMA_BUFFER_SIZE.
*/
ret = RXDMA_BUFFER_SIZE;
}
return ret;
}
else
{
ret = (cda - (uint32_t)priv->rxbuf[1]) / sizeof(uint32_t);
if (cda < (uint32_t)priv->rxbuf[1])
{
/* We are already in another buffer so we need to read the
* whole RXDMA_BUFFER_SIZE.
*/
ret = RXDMA_BUFFER_SIZE;
}
return ret;
}
}
#endif
/****************************************************************************
* Name: sam_setup
*
* Description:
* Configure the USART baud, bits, parity, etc. This method is called the
* first time that the serial port is opened.
*
****************************************************************************/
static int sam_setup(struct uart_dev_s *dev)
{
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
#ifndef CONFIG_SUPPRESS_UART_CONFIG
uint32_t divb3;
uint32_t intpart;
uint32_t fracpart;
uint32_t regval;
/* Note: The logic here depends on the fact that that the USART module
* was enabled and the pins were configured in sam_lowsetup().
*/
/* The shutdown method will put the UART in a known, disabled state */
sam_shutdown(dev);
/* Set up the mode register. Start with normal UART mode and the MCK
* as the timing source
*/
#if defined(CONFIG_SERIAL_IFLOWCONTROL) || defined(CONFIG_SERIAL_OFLOWCONTROL)
/* "Setting the USART to operate with hardware handshaking is performed by
* writing the USART_MODE field in the Mode Register (US_MR) to the value
* 0x2. ... Using this mode requires using the PDC or DMAC channel for
* reception. The transmitter can handle hardware handshaking in any
* case."
*/
if (priv->flowc)
{
/* Enable hardware flow control and MCK as the timing source
* (the divided clock source may be reselected below).
*/
regval = (UART_MR_MODE_HWHS | UART_MR_USCLKS_MCK);
}
else
#endif
{
/* Set up the mode register. Start with normal UART mode and the MCK
* as the timing source (the divided clock source may be reselected
* below).
*/
regval = (UART_MR_MODE_NORMAL | UART_MR_USCLKS_MCK);
}
/* OR in settings for the selected number of bits */
if (priv->bits == 5)
{
regval |= UART_MR_CHRL_5BITS; /* 5 bits */
}
else if (priv->bits == 6)
{
regval |= UART_MR_CHRL_6BITS; /* 6 bits */
}
else if (priv->bits == 7)
{
regval |= UART_MR_CHRL_7BITS; /* 7 bits */
}
#ifdef HAVE_UART_DEVICE
else if (priv->bits == 9
#if defined(CONFIG_SAMV7_UART0) && defined(CONFIG_UART0_SERIALDRIVER)
&& priv->usartbase != SAM_UART0_BASE
#endif
#if defined(CONFIG_SAMV7_UART1) && defined(CONFIG_UART1_SERIALDRIVER)
&& priv->usartbase != SAM_UART1_BASE
#endif
)
{
regval |= UART_MR_MODE9; /* 9 bits */
}
#endif
else /* if (priv->bits == 8) */
{
regval |= UART_MR_CHRL_8BITS; /* 8 bits (default) */
}
/* OR in settings for the selected parity */
if (priv->parity == 1)
{
regval |= UART_MR_PAR_ODD;
}
else if (priv->parity == 2)
{
regval |= UART_MR_PAR_EVEN;
}
else
{
regval |= UART_MR_PAR_NONE;
}
/* OR in settings for the number of stop bits */
if (priv->stopbits2)
{
regval |= UART_MR_NBSTOP_2;
}
else
{
regval |= UART_MR_NBSTOP_1;
}
/* And save the new mode register value */
sam_serialout(priv, SAM_UART_MR_OFFSET, regval);
/* Configure the console baud:
*
* Fbaud = USART_CLOCK / (16 * divisor)
* divisor = USART_CLOCK / (16 * Fbaud)
*
* NOTE: Oversampling by 8 is not supported. This may limit BAUD rates
* for lower USART clocks.
*/
divb3 = ((FAST_USART_CLOCK + (priv->baud << 3)) << 3) /
(priv->baud << 4);
intpart = divb3 >> 3;
fracpart = divb3 & 7;
/* Retain the fast MR peripheral clock UNLESS unless using that clock
* would result in an excessively large divider.
*
* REVISIT: The fractional divider is not used.
*/
if ((intpart & ~UART_BRGR_CD_MASK) != 0)
{
/* Use the divided USART clock */
divb3 = ((SLOW_USART_CLOCK + (priv->baud << 3)) << 3) /
(priv->baud << 4);
intpart = divb3 >> 3;
fracpart = divb3 & 7;
/* Re-select the clock source */
regval = sam_serialin(priv, SAM_UART_MR_OFFSET);
regval &= ~UART_MR_USCLKS_MASK;
regval |= UART_MR_USCLKS_MCKDIV;
sam_serialout(priv, SAM_UART_MR_OFFSET, regval);
}
/* Save the BAUD divider (the fractional part is not used for UARTs) */
regval = UART_BRGR_CD(intpart) | UART_BRGR_FP(fracpart);
sam_serialout(priv, SAM_UART_BRGR_OFFSET, regval);
/* Enable receiver & transmitter */
sam_serialout(priv, SAM_UART_CR_OFFSET, (UART_CR_RXEN | UART_CR_TXEN));
#ifdef SERIAL_HAVE_RS485
if (priv->has_rs485)
{
sam_configgpio(priv->rs485_dir_gpio);
regval = sam_serialin(priv, SAM_UART_MR_OFFSET);
regval |= UART_MR_MODE_RS485;
sam_serialout(priv, SAM_UART_MR_OFFSET, regval);
}
#endif
#endif
return OK;
}
/****************************************************************************
* Name: sam_dma_setup
*
* Description:
* Configure the UART (USART) baud, bits, parity, etc. This method is
* called the first time that the serial port is opened.
*
****************************************************************************/
#if defined(SERIAL_HAVE_RXDMA) || defined(SERIAL_HAVE_TXDMA)
static int sam_dma_setup(struct uart_dev_s *dev)
{
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
int result;
/* Do the basic UART setup first, unless we are the console */
if (!dev->isconsole)
{
result = sam_setup(dev);
if (result != OK)
{
return result;
}
}
#ifdef SERIAL_HAVE_RXDMA
/* Acquire the DMA channel. This should always succeed. */
if (priv->has_rxdma)
{
/* Do this only if this peripheral has RX DMA enabled. */
priv->rxdma = sam_dmachannel(0, DMA_RXFLAGS |
DMACH_FLAG_PERIPHPID(priv->pid));
/* Configure for circular DMA reception into the RX fifo */
uint32_t paddr = priv->usartbase + SAM_UART_RHR_OFFSET;
uint32_t maddr[] =
{
(uintptr_t)priv->rxbuf[0],
(uintptr_t)priv->rxbuf[1]
};
/* sam_dmarxsetup() needs number of bytes to transfer. Since 1
* transfer is 32 bits = 4 bytes we need to multiply
* RXDMA_BUFFER_SIZE by 4 to get the number of characters as
* defined in RXDMA_BUFFER_SIZE.
*/
size_t buflen = RXDMA_BUFFER_SIZE << 2;
sam_dmarxsetup_circular(priv->rxdma, priv->desc, maddr,
paddr, buflen, 2);
/* Reset our DMA shadow pointer to match the address just
* programmed above.
*/
priv->rxdmanext = 0;
priv->nextcache = 0;
priv->buf_idx = 0;
priv->rxenable = true;
priv->odd = false;
/* Start the DMA channel, and arrange for callbacks at the half and
* full points in the FIFO. This ensures that we have half a FIFO
* worth of time to claim bytes before they are overwritten.
*/
sam_dmastart_circular(priv->rxdma, sam_dma_rxcallback, (void *)dev);
if (priv->has_rxdma_idle)
{
/* Use defined timeout to check if RX bus is in idle state */
sam_serialout(priv, SAM_UART_RTOR_OFFSET,
CONFIG_SAMV7_SERIAL_DMA_TIMEOUT);
sam_serialout(priv, SAM_UART_IER_OFFSET, UART_INT_TIMEOUT);
}
}
#endif
#ifdef SERIAL_HAVE_TXDMA
if (priv->has_txdma)
{
/* Do this only if this peripheral has TX DMA enabled. */
priv->txdma = sam_dmachannel(0, DMA_TXFLAGS | \
DMACH_FLAG_PERIPHPID(priv->pid));
sem_init(&priv->txdma_sem, 0, 1);
}
#endif
return OK;
}
#endif
/****************************************************************************
* Name: sam_shutdown
*
* Description:
* Disable the USART. This method is called when the serial
* port is closed
*
****************************************************************************/
static void sam_shutdown(struct uart_dev_s *dev)
{
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
uint32_t regval;
/* Reset and disable receiver and transmitter */
sam_serialout(priv, SAM_UART_CR_OFFSET,
(UART_CR_RSTRX | UART_CR_RSTTX | UART_CR_RXDIS |
UART_CR_TXDIS));
/* Set mode back to normal */
regval = sam_serialin(priv, SAM_UART_MR_OFFSET);
regval &= ~UART_MR_MODE_MASK;
sam_serialout(priv, SAM_UART_MR_OFFSET, regval);
#ifdef SERIAL_HAVE_RS485
if (priv->has_rs485)
{
/* Force RTS pin to get low if RS-485 mode is enabled */
sam_serialout(priv, SAM_UART_CR_OFFSET, UART_CR_RTSEN);
}
#endif
/* Disable all interrupts */
sam_disableallints(priv, NULL);
}
/****************************************************************************
* Name: sam_dma_shutdown
*
* Description:
* Disable the UART/USART. This method is called when the serial
* port is closed
*
****************************************************************************/
#if defined(SERIAL_HAVE_RXDMA) || defined(SERIAL_HAVE_TXDMA)
static void sam_dma_shutdown(struct uart_dev_s *dev)
{
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
/* Perform the normal UART shutdown */
sam_shutdown(dev);
#ifdef SERIAL_HAVE_RXDMA
if (priv->has_rxdma)
{
/* Stop the RX DMA channel */
sam_dmastop(priv->rxdma);
/* Release the RX DMA channel */
sam_dmafree(priv->rxdma);
priv->rxdma = NULL;
}
#endif
#ifdef SERIAL_HAVE_TXDMA
if (priv->has_txdma)
{
/* Stop the TX DMA channel */
sam_dmastop(priv->txdma);
/* Release the TX DMA channel */
sam_dmafree(priv->txdma);
priv->txdma = NULL;
}
#endif
}
#endif
/****************************************************************************
* Name: sam_attach
*
* Description:
* Configure the USART to operation in interrupt driven mode. This method
* is called when the serial port is opened. Normally, this is just after
* the setup() method is called, however, the serial console may operate in
* a non-interrupt driven mode during the boot phase.
*
* RX and TX interrupts are not enabled when by the attach method (unless
* the hardware supports multiple levels of interrupt enabling). The RX
* and TX interrupts are not enabled until the txint() and rxint() methods
* are called.
*
****************************************************************************/
static int sam_attach(struct uart_dev_s *dev)
{
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
int ret;
/* Attach and enable the IRQ */
ret = irq_attach(priv->irq, sam_interrupt, dev);
if (ret == OK)
{
/* Enable the interrupt (RX and TX interrupts are still disabled
* in the USART
*/
up_enable_irq(priv->irq);
}
return ret;
}
/****************************************************************************
* Name: sam_detach
*
* Description:
* Detach USART interrupts. This method is called when the serial port is
* closed normally just before the shutdown method is called. The
* exception is the serial console which is never shutdown.
*
****************************************************************************/
static void sam_detach(struct uart_dev_s *dev)
{
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
up_disable_irq(priv->irq);
irq_detach(priv->irq);
}
/****************************************************************************
* Name: sam_interrupt
*
* Description:
* This is the common UART/USART interrupt handler. It will be invoked
* when an interrupt is received on the 'irq'. It should call
* uart_xmitchars or uart_recvchars to perform the appropriate data
* transfers. The interrupt handling logic must be able to map the 'arg'
* to the appropriate uart_dev_s structure in order to call these
* functions.
*
****************************************************************************/
static int sam_interrupt(int irq, void *context, void *arg)
{
struct uart_dev_s *dev = (struct uart_dev_s *)arg;
struct sam_dev_s *priv;
uint32_t pending;
uint32_t imr;
int passes;
bool handled;
DEBUGASSERT(dev != NULL && dev->priv != NULL);
priv = (struct sam_dev_s *)dev->priv;
/* Loop until there are no characters to be transferred or, until we have
* been looping for a long time.
*/
handled = true;
for (passes = 0; passes < 256 && handled; passes++)
{
handled = false;
/* Get the UART/USART status (we are only interested in the unmasked
* interrupts).
*/
priv->sr = sam_serialin(priv, SAM_UART_SR_OFFSET);
imr = sam_serialin(priv, SAM_UART_IMR_OFFSET);
pending = priv->sr & imr;
/* Handle an incoming, receive byte. RXRDY: At least one complete
* character has been received and US_RHR has not yet been read.
*/
if ((pending & UART_INT_RXRDY) != 0)
{
/* Received data ready... process incoming bytes */
uart_recvchars(dev);
handled = true;
}
/* Handle outgoing, transmit bytes. TXRDY: There is no character in the
* US_THR.
*/
if ((pending & UART_INT_TXRDY) != 0)
{
/* Transmit data register empty ... process outgoing bytes */
uart_xmitchars(dev);
handled = true;
}
/* Timeout interrupt (idle detection for USART) */
#ifdef SERIAL_HAVE_RXDMA
if ((pending & UART_INT_TIMEOUT) != 0)
{
if (priv->has_rxdma && priv->has_rxdma_idle)
{
/* We received Timeout interrupt */
uint32_t regval = sam_serialin(priv, SAM_UART_CR_OFFSET);
regval |= UART_CR_STTTO;
sam_serialout(priv, SAM_UART_CR_OFFSET, regval);
sam_dma_rxcallback(priv->rxdma, dev, 0);
}
}
#endif /* SERIAL_HAVE_RXDMA */
}
return OK;
}
/****************************************************************************
* Name: sam_ioctl
*
* Description:
* All ioctl calls will be routed through this method
*
****************************************************************************/
static int sam_ioctl(struct file *filep, int cmd, unsigned long arg)
{
#if defined(CONFIG_SERIAL_TERMIOS) || defined(CONFIG_SERIAL_TIOCSERGSTRUCT)
struct inode *inode = filep->f_inode;
struct uart_dev_s *dev = inode->i_private;
#endif
int ret = OK;
switch (cmd)
{
#ifdef CONFIG_SERIAL_TIOCSERGSTRUCT
case TIOCSERGSTRUCT:
{
struct sam_dev_s *user = (struct sam_dev_s *)arg;
if (!user)
{
ret = -EINVAL;
}
else
{
memcpy(user, dev, sizeof(struct sam_dev_s));
}
}
break;
#endif
#ifdef CONFIG_SERIAL_TERMIOS
case TCGETS:
{
struct termios *termiosp = (struct termios *)arg;
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
if (!termiosp)
{
ret = -EINVAL;
break;
}
/* Return parity */
termiosp->c_cflag = ((priv->parity != 0) ? PARENB : 0) |
((priv->parity == 1) ? PARODD : 0);
/* Return stop bits */
termiosp->c_cflag |= (priv->stopbits2) ? CSTOPB : 0;
/* Return flow control */
#if defined(CONFIG_SERIAL_IFLOWCONTROL) || defined(CONFIG_SERIAL_OFLOWCONTROL)
termiosp->c_cflag |= (priv->flowc) ? (CCTS_OFLOW | CRTS_IFLOW): 0;
#endif
/* Return baud */
cfsetispeed(termiosp, priv->baud);
/* Return number of bits */
switch (priv->bits)
{
case 5:
termiosp->c_cflag |= CS5;
break;
case 6:
termiosp->c_cflag |= CS6;
break;
case 7:
termiosp->c_cflag |= CS7;
break;
default:
case 8:
termiosp->c_cflag |= CS8;
break;
case 9:
termiosp->c_cflag |= CS8 /* CS9 */;
break;
}
}
break;
case TCSETS:
{
struct termios *termiosp = (struct termios *)arg;
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
uint32_t baud;
uint32_t imr;
uint8_t parity;
uint8_t nbits;
bool stop2;
#if defined(CONFIG_SERIAL_IFLOWCONTROL) || defined(CONFIG_SERIAL_OFLOWCONTROL)
bool flowc;
#endif
if (!termiosp)
{
ret = -EINVAL;
break;
}
/* Decode baud. */
ret = OK;
baud = cfgetispeed(termiosp);
/* Decode number of bits */
switch (termiosp->c_cflag & CSIZE)
{
case CS5:
nbits = 5;
break;
case CS6:
nbits = 6;
break;
case CS7:
nbits = 7;
break;
case CS8:
nbits = 8;
break;
#if 0
case CS9:
nbits = 9;
break;
#endif
default:
ret = -EINVAL;
break;
}
/* Decode parity */
if ((termiosp->c_cflag & PARENB) != 0)
{
parity = (termiosp->c_cflag & PARODD) ? 1 : 2;
}
else
{
parity = 0;
}
/* Decode stop bits */
stop2 = (termiosp->c_cflag & CSTOPB) != 0;
/* Decode flow control */
#if defined(CONFIG_SERIAL_IFLOWCONTROL) || defined(CONFIG_SERIAL_OFLOWCONTROL)
flowc = (termiosp->c_cflag & (CCTS_OFLOW | CRTS_IFLOW)) != 0;
#endif
/* Verify that all settings are valid before committing */
if (ret == OK)
{
/* Commit */
priv->baud = baud;
priv->parity = parity;
priv->bits = nbits;
priv->stopbits2 = stop2;
#if defined(CONFIG_SERIAL_IFLOWCONTROL) || defined(CONFIG_SERIAL_OFLOWCONTROL)
priv->flowc = flowc;
#endif
/* effect the changes immediately - note that we do not
* implement TCSADRAIN / TCSAFLUSH
*/
sam_disableallints(priv, &imr);
ret = sam_setup(dev);
/* Restore the interrupt state */
sam_restoreusartint(priv, imr);
}
}
break;
#endif /* CONFIG_SERIAL_TERMIOS */
default:
ret = -ENOTTY;
break;
}
return ret;
}
/****************************************************************************
* Name: sam_receive
*
* Description:
* Called (usually) from the interrupt level to receive one
* character from the USART. Error bits associated with the
* receipt are provided in the return 'status'.
*
****************************************************************************/
#ifdef SERIAL_HAVE_NORXDMA_OPS
static int sam_receive(struct uart_dev_s *dev, unsigned int *status)
{
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
/* Return the error information in the saved status */
*status = priv->sr;
priv->sr = 0;
/* Then return the actual received byte */
return (int)(sam_serialin(priv, SAM_UART_RHR_OFFSET) & 0xff);
}
#endif
/****************************************************************************
* Name: sam_rxint
*
* Description:
* Call to enable or disable RXRDY interrupts
*
****************************************************************************/
#ifdef SERIAL_HAVE_NORXDMA_OPS
static void sam_rxint(struct uart_dev_s *dev, bool enable)
{
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
if (enable)
{
/* Receive an interrupt when their is anything in the Rx data register
* (or an RX timeout occurs).
*/
#ifndef CONFIG_SUPPRESS_SERIAL_INTS
sam_serialout(priv, SAM_UART_IER_OFFSET, UART_INT_RXRDY);
#endif
}
else
{
sam_serialout(priv, SAM_UART_IDR_OFFSET, UART_INT_RXRDY);
}
}
#endif
/****************************************************************************
* Name: sam_rxavailable
*
* Description:
* Return true if the receive holding register is not empty
*
****************************************************************************/
#ifdef SERIAL_HAVE_NORXDMA_OPS
static bool sam_rxavailable(struct uart_dev_s *dev)
{
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
return ((sam_serialin(priv, SAM_UART_SR_OFFSET) & UART_INT_RXRDY) != 0);
}
#endif
/****************************************************************************
* Name: sam_dma_receive
*
* Description:
* Called (usually) from the interrupt level to receive one
* character from the USART. Error bits associated with the
* receipt are provided in the return 'status'.
*
****************************************************************************/
#ifdef SERIAL_HAVE_RXDMA
static int sam_dma_receive(struct uart_dev_s *dev, unsigned int *status)
{
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
int c = 0;
*status = priv->sr;
priv->sr = 0;
/* Read character from the RX FIFO */
c = priv->rxbuf[priv->buf_idx][priv->rxdmanext] & UART_RHR_RXCHR_MASK;
priv->rxdmanext++;
if (priv->rxdmanext == RXDMA_BUFFER_SIZE)
{
priv->rxdmanext = 0;
priv->nextcache = 0;
priv->odd = !priv->odd;
priv->buf_idx = 1 & ~priv->buf_idx;
}
return c;
}
#endif
/****************************************************************************
* Name: sam_dma_rxint
*
* Description:
* Call to enable or disable RX interrupts
*
****************************************************************************/
#ifdef SERIAL_HAVE_RXDMA
static void sam_dma_rxint(struct uart_dev_s *dev, bool enable)
{
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
/* En/disable DMA reception.
*
* Note that it is not safe to check for available bytes and immediately
* pass them to uart_recvchars as that could potentially recurse back
* to us again. Instead, bytes must wait until the next sam_dma_poll or
* DMA event.
*/
if (priv->rxenable != enable)
{
priv->rxenable = enable;
if (enable)
{
sam_serialout(priv, SAM_UART_IER_OFFSET, UART_INT_TIMEOUT);
}
else
{
sam_serialout(priv, SAM_UART_IDR_OFFSET, UART_INT_TIMEOUT);
}
}
}
#endif
/****************************************************************************
* Name: sam_dma_rxavailable
*
* Description:
* Return true if there are some data in the buffer we can read. Also takes
* care of invalidating data cache.
*
****************************************************************************/
#ifdef SERIAL_HAVE_RXDMA
static bool sam_dma_rxavailable(struct uart_dev_s *dev)
{
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
uint32_t nextrx;
bool ret;
ret = false;
/* Get the current DMA pointer */
nextrx = sam_dma_nextrx(priv);
/* Compare our receive pointer to the current DMA pointer, if they
* do match, then there are bytes to be received.
*/
if ((nextrx != priv->rxdmanext) && priv->rxenable)
{
/* Invalidate data cache if necessary. This basically ensures
* we invalidate only that part of cache we need to.
*/
if (priv->nextcache < nextrx)
{
up_invalidate_dcache((uintptr_t)priv->rxbuf[priv->buf_idx]
+ (priv->nextcache << 2),
(uintptr_t)priv->rxbuf[priv->buf_idx]
+ (nextrx << 2));
/* Move the pointer to the memory for which the cache was
* invalidated.
*/
priv->nextcache = nextrx;
}
ret = true;
}
return ret;
}
#endif
/****************************************************************************
* Name: sam_send
*
* Description:
* This method will send one byte on the UART/USART
*
****************************************************************************/
static void sam_send(struct uart_dev_s *dev, int ch)
{
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
sam_serialout(priv, SAM_UART_THR_OFFSET, (uint32_t)ch);
}
/****************************************************************************
* Name: sam_txint
*
* Description:
* Call to enable or disable TX interrupts
*
****************************************************************************/
#ifdef SERIAL_HAVE_NOTXDMA_OPS
static void sam_txint(struct uart_dev_s *dev, bool enable)
{
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
irqstate_t flags;
flags = enter_critical_section();
if (enable)
{
/* Set to receive an interrupt when the TX holding register register
* is empty
*/
#ifndef CONFIG_SUPPRESS_SERIAL_INTS
sam_serialout(priv, SAM_UART_IER_OFFSET, UART_INT_TXRDY);
/* Fake a TX interrupt here by just calling uart_xmitchars() with
* interrupts disabled (note this may recurse).
*/
uart_xmitchars(dev);
#endif
}
else
{
/* Disable the TX interrupt */
sam_serialout(priv, SAM_UART_IDR_OFFSET, UART_INT_TXRDY);
}
leave_critical_section(flags);
}
#endif
/****************************************************************************
* Name: sam_txready
*
* Description:
* Return true if the transmit holding register is empty (TXRDY)
*
****************************************************************************/
#ifdef SERIAL_HAVE_NOTXDMA_OPS
static bool sam_txready(struct uart_dev_s *dev)
{
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
return ((sam_serialin(priv, SAM_UART_SR_OFFSET) & UART_INT_TXRDY) != 0);
}
#endif
/****************************************************************************
* Name: sam_dma_rxcallback
*
* Description:
* This function checks the current DMA state and calls the generic
* serial stack when bytes appear to be available.
*
****************************************************************************/
#ifdef SERIAL_HAVE_RXDMA
static void sam_dma_rxcallback(DMA_HANDLE handle, void *arg, int status)
{
struct uart_dev_s *dev = (struct uart_dev_s *)arg;
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
if (priv->rxenable && sam_dma_rxavailable(dev))
{
uart_recvchars(dev);
}
}
#endif
/****************************************************************************
* Name: sam_txempty
*
* Description:
* Return true if the transmit holding and shift registers are empty
*
****************************************************************************/
#ifdef SERIAL_HAVE_NODMA_OPS
static bool sam_txempty(struct uart_dev_s *dev)
{
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
return ((sam_serialin(priv, SAM_UART_SR_OFFSET) & UART_INT_TXEMPTY) != 0);
}
#endif
/****************************************************************************
* Name: sam_dma_send
*
* Description:
* This method will initiates DMA transfer for sending bytes over UART.
*
****************************************************************************/
#ifdef SERIAL_HAVE_TXDMA
static void sam_dma_send(struct uart_dev_s *dev)
{
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
uint32_t maddr;
uint32_t paddr;
size_t buflen;
/* We need to stop DMA before reconfiguration */
sam_dmastop(priv->txdma);
/* Flush the contents of the TX buffer into physical memory */
up_flush_dcache((uintptr_t)dev->dmatx.buffer,
(uintptr_t)dev->dmatx.buffer + dev->dmatx.length);
/* Setup first half */
paddr = priv->usartbase + SAM_UART_THR_OFFSET;
maddr = (uint32_t) dev->dmatx.buffer;
buflen = (size_t) dev->dmatx.length;
/* Is this a split transfer? */
sam_dmatxsetup(priv->txdma, paddr, maddr, buflen);
/* Start transmission with the callback on DMA completion */
sam_dmastart(priv->txdma, sam_dma_txcallback, (void *)dev);
}
/****************************************************************************
* Name: sam_dma_txint
*
* Description:
* This method handles TX interrupt if DMA is enabled.
*
****************************************************************************/
static void sam_dma_txint(struct uart_dev_s *dev, bool enable)
{
/* Nothing to do. */
/* In case of DMA transfer we do not want to make use of UART interrupts.
* Instead, we use DMA interrupts that are activated once during boot
* sequence. Furthermore we can use sam_dma_txcallback() to handle staff at
* half DMA transfer or after transfer completion (depending configuration,
* see stm32_dmastart(...) ).
*/
}
/****************************************************************************
* Name: sam_dma_txavailable
*
* Description:
* This method waits on semaphore until DMA is available.
*
****************************************************************************/
static void sam_dma_txavailable(struct uart_dev_s *dev)
{
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
/* Only send when the DMA is idle */
if (sam_dmaresidual(priv->txdma) == 0)
{
uart_xmitchars_dma(dev);
}
}
/****************************************************************************
* Name: sam_dma_txavailable_worker
*
* Description:
* This method waits on semaphore until DMA is available.
*
****************************************************************************/
static void sam_dma_txavailable_worker(void *arg)
{
struct uart_dev_s *dev = (struct uart_dev_s *)arg;
/* Just call sam_dma_txavailable. We cannot have sam_dma_txavailable
* directly as a worker because the function is defined with
* struct uart_dev_s *dev parameter.
*/
sam_dma_txavailable(dev);
}
/****************************************************************************
* Name: sam_dma_txcallback
*
* Description:
* This method implements callback after DMA is done.
*
****************************************************************************/
static void sam_dma_txcallback(DMA_HANDLE handle, void *arg, int status)
{
struct uart_dev_s *dev = (struct uart_dev_s *)arg;
struct sam_dev_s *priv = (struct sam_dev_s *)dev->priv;
uint32_t maddr;
uint32_t paddr;
size_t buflen;
if (status != OK)
{
/* This means some error occurred during DMA transfer. This is most
* likely just rare error so schedule work again. Note that this is not
* ideal and we could end in an infinite loop. Better approach would be
* to use some error counter and report error to serial driver if
* counter exceeds some limit. However there currently is no way how to
* report DMA error to upper layer driver.
*/
DEBUGASSERT(work_available(&priv->work));
DEBUGVERIFY(work_queue(HPWORK, &priv->work, sam_dma_txavailable_worker,
(void *)dev, 0));
return;
}
/* Update 'nbytes' indicating number of bytes actually transferred by DMA.
* This is important to free TX buffer space by 'uart_xmitchars_done'.
*/
dev->dmatx.nbytes = dev->dmatx.length;
if (priv->dev.dmatx.nlength)
{
/* Set up DMA on next buffer */
up_flush_dcache((uintptr_t)dev->dmatx.nbuffer,
(uintptr_t)dev->dmatx.nbuffer + dev->dmatx.nlength);
paddr = priv->usartbase + SAM_UART_THR_OFFSET;
maddr = (uint32_t)dev->dmatx.nbuffer;
buflen = (size_t)dev->dmatx.nlength;
/* Start transmission with the callback on DMA completion */
sam_dmatxsetup(priv->txdma, paddr, maddr, buflen);
/* Set length for next completion */
priv->dev.dmatx.length = priv->dev.dmatx.nlength;
priv->dev.dmatx.nlength = 0;
/* Start transmission with the callback on DMA completion */
sam_dmastart(priv->txdma, sam_dma_txcallback, (void *)dev);
return;
}
/* Finish DMA transfer and let waiting task (if any) know it is free
* to use.
*/
uart_xmitchars_done(dev);
/* Check for available transfer. This is handled by HP worker as we
* are currently in DMA interrupt. So just schedule next work and return
* from the interrupt.
*/
DEBUGASSERT(work_available(&priv->work));
DEBUGVERIFY(work_queue(HPWORK, &priv->work, sam_dma_txavailable_worker,
(void *)dev, 0));
}
#endif /* SERIAL_HAVE_TXDMA */
/****************************************************************************
* Public Functions
****************************************************************************/
/****************************************************************************
* Name: sam_serial_dma_poll
*
* Description:
* Checks receive DMA buffers for received bytes that have not accumulated
* to the point where the DMA half/full interrupt has triggered.
*
* This function should be called from a timer or other periodic context.
*
* This polling also in not necessary if CONFIG_SAMV7_SERIAL_DMA_TIMEOUT
* is defined as sam_dma_rxcallback() is called each time idle bus is
* detected. This however only applies to USART peripherals, UART has to
* be polled in any case.
*
****************************************************************************/
#ifdef SERIAL_HAVE_RXDMA
void sam_serial_dma_poll(void)
{
irqstate_t flags;
flags = enter_critical_section();
#ifdef CONFIG_UART0_RXDMA
if (g_uart0priv.rxdma != NULL)
{
sam_dma_rxcallback(g_uart0priv.rxdma, &g_uart0port, 0);
}
#endif
#ifdef CONFIG_UART1_RXDMA
if (g_uart1priv.rxdma != NULL)
{
sam_dma_rxcallback(g_uart1priv.rxdma, &g_uart1port, 0);
}
#endif
#ifdef CONFIG_UART2_RXDMA
if (g_uart2priv.rxdma != NULL)
{
sam_dma_rxcallback(g_uart2priv.rxdma, &g_uart2port, 0);
}
#endif
#ifdef CONFIG_UART3_RXDMA
if (g_uart3priv.rxdma != NULL)
{
sam_dma_rxcallback(g_uart3priv.rxdma, &g_uart3port, 0);
}
#endif
#ifdef CONFIG_UART4_RXDMA
if (g_uart4priv.rxdma != NULL)
{
sam_dma_rxcallback(g_uart4priv.rxdma, &g_uart4port, 0);
}
#endif
#ifdef CONFIG_USART0_RXDMA
if (g_usart0priv.rxdma != NULL)
{
sam_dma_rxcallback(g_usart0priv.rxdma, &g_usart0port, 0);
}
#endif
#ifdef CONFIG_USART1_RXDMA
if (g_usart1priv.rxdma != NULL)
{
sam_dma_rxcallback(g_usart1priv.rxdma, &g_usart1port, 0);
}
#endif
#ifdef CONFIG_USART2_RXDMA
if (g_usart2priv.rxdma != NULL)
{
sam_dma_rxcallback(g_usart2priv.rxdma, &g_usart2port, 0);
}
#endif
leave_critical_section(flags);
}
#endif
/****************************************************************************
* Name: arm_earlyserialinit
*
* Description:
* Performs the low level USART initialization early in debug so that the
* serial console will be available during boot up. This must be called
* before arm_serialinit.
*
****************************************************************************/
#ifdef USE_EARLYSERIALINIT
void arm_earlyserialinit(void)
{
/* NOTE: All GPIO configuration for the USARTs was performed in
* sam_lowsetup
*/
/* Disable all USARTS */
#ifdef TTYS0_DEV
sam_disableallints(TTYS0_DEV.priv, NULL);
#endif
#ifdef TTYS1_DEV
sam_disableallints(TTYS1_DEV.priv, NULL);
#endif
#ifdef TTYS2_DEV
sam_disableallints(TTYS2_DEV.priv, NULL);
#endif
#ifdef TTYS3_DEV
sam_disableallints(TTYS3_DEV.priv, NULL);
#endif
#ifdef TTYS4_DEV
sam_disableallints(TTYS4_DEV.priv, NULL);
#endif
#ifdef TTYS5_DEV
sam_disableallints(TTYS5_DEV.priv, NULL);
#endif
#ifdef TTYS6_DEV
sam_disableallints(TTYS6_DEV.priv, NULL);
#endif
#ifdef TTYS7_DEV
sam_disableallints(TTYS7_DEV.priv, NULL);
#endif
/* Configuration whichever one is the console */
#ifdef HAVE_SERIAL_CONSOLE
CONSOLE_DEV.isconsole = true;
sam_setup(&CONSOLE_DEV);
#endif
}
#endif
/****************************************************************************
* Name: arm_serialinit
*
* Description:
* Register serial console and serial ports. This assumes
* that arm_earlyserialinit was called previously.
*
****************************************************************************/
void arm_serialinit(void)
{
/* Register the console */
#ifdef HAVE_SERIAL_CONSOLE
uart_register("/dev/console", &CONSOLE_DEV);
#endif
#ifdef SERIAL_HAVE_CONSOLE_DMA
/* If we need to re-initialise the console to enable DMA do that here. */
sam_dma_setup(&CONSOLE_DEV);
#endif
/* Register all USARTs */
#ifdef TTYS0_DEV
uart_register("/dev/ttyS0", &TTYS0_DEV);
#endif
#ifdef TTYS1_DEV
uart_register("/dev/ttyS1", &TTYS1_DEV);
#endif
#ifdef TTYS2_DEV
uart_register("/dev/ttyS2", &TTYS2_DEV);
#endif
#ifdef TTYS3_DEV
uart_register("/dev/ttyS3", &TTYS3_DEV);
#endif
#ifdef TTYS4_DEV
uart_register("/dev/ttyS4", &TTYS4_DEV);
#endif
#ifdef TTYS5_DEV
uart_register("/dev/ttyS5", &TTYS5_DEV);
#endif
#ifdef TTYS6_DEV
uart_register("/dev/ttyS6", &TTYS6_DEV);
#endif
#ifdef TTYS7_DEV
uart_register("/dev/ttyS7", &TTYS7_DEV);
#endif
}
#endif /* USE_SERIALDRIVER */