blob: 48afd54ff3f8add686600b0c5370d26a4c9ebed1 [file] [log] [blame]
/**
*** Build a deterministic finite automaton to associate CCSIDs with
*** character set names.
***
*** Compile on OS/400 with options SYSIFCOPT(*IFSIO).
***
*** See Copyright for the status of this software.
***
*** Author: Patrick Monnerat <pm@datasphere.ch>, DATASPHERE S.A.
**/
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <ctype.h>
#include <iconv.h>
#ifdef OLDXML
#include "xml.h"
#else
#include <libxml/hash.h>
#include <libxml/parser.h>
#include <libxml/xpath.h>
#include <libxml/xpathInternals.h>
#endif
#ifdef __OS400__
#define iconv_open_error(cd) ((cd).return_value == -1)
#define set_iconv_open_error(cd) ((cd).return_value = -1)
#else
#define iconv_open_error(cd) ((cd) == (iconv_t) -1)
#define set_iconv_open_error(cd) ((cd) = (iconv_t) -1)
#endif
#define C_SOURCE_CCSID 500
#define C_UTF8_CCSID 1208
#define UTF8_SPACE 0x20
#define UTF8_HT 0x09
#define UTF8_0 0x30
#define UTF8_9 0x39
#define UTF8_A 0x41
#define UTF8_Z 0x5A
#define UTF8_a 0x61
#define UTF8_z 0x7A
#define GRANULE 128 /* Memory allocation granule. */
#define EPSILON 0x100 /* Token for empty transition. */
#ifndef OFFSETOF
#define OFFSETOF(t, f) ((unsigned int) ((char *) &((t *) 0)->f - (char *) 0))
#endif
#ifndef OFFSETBY
#define OFFSETBY(t, p, o) ((t *) ((char *) (p) + (unsigned int) (o)))
#endif
typedef struct t_transition t_transition; /* NFA/DFA transition. */
typedef struct t_state t_state; /* NFA/DFA state node. */
typedef struct t_symlist t_symlist; /* Symbol (i.e.: name) list. */
typedef struct t_chset t_chset; /* Character set. */
typedef struct t_stategroup t_stategroup; /* Optimization group. */
typedef unsigned char utf8char; /* UTF-8 character byte. */
typedef unsigned char byte; /* Untyped data byte. */
typedef struct { /* Set of pointers. */
unsigned int p_size; /* Current allocated size. */
unsigned int p_card; /* Current element count. */
void * p_set[1]; /* Element array. */
} t_powerset;
struct t_transition {
t_transition * t_forwprev; /* Head of forward transition list. */
t_transition * t_forwnext; /* Tail of forward transition list. */
t_transition * t_backprev; /* Head of backward transition list. */
t_transition * t_backnext; /* Tail of backward transition list. */
t_state * t_from; /* Incoming state. */
t_state * t_to; /* Destination state. */
unsigned short t_token; /* Transition token. */
unsigned int t_index; /* Transition array index. */
};
struct t_state {
t_state * s_next; /* Next state (for DFA construction). */
t_state * s_stack; /* Unprocessed DFA states stack. */
t_transition * s_forward; /* Forward transitions. */
t_transition * s_backward; /* Backward transitions. */
t_chset * s_final; /* Recognized character set. */
t_powerset * s_nfastates; /* Corresponding NFA states. */
unsigned int s_index; /* State index. */
};
struct t_symlist {
t_symlist * l_next; /* Next name in list. */
utf8char l_symbol[1]; /* Name bytes. */
};
struct t_chset {
t_chset * c_next; /* Next character set. */
t_symlist * c_names; /* Character set name list. */
iconv_t c_fromUTF8; /* Conversion from UTF-8. */
unsigned int c_ccsid; /* IBM character set code. */
unsigned int c_mibenum; /* IANA character code. */
};
struct t_stategroup {
t_stategroup * g_next; /* Next group. */
t_state * g_member; /* Group member (s_stack) list. */
unsigned int g_id; /* Group ident. */
};
t_chset * chset_list; /* Character set list. */
t_state * initial_state; /* Initial NFA state. */
iconv_t job2utf8; /* Job CCSID to UTF-8 conversion. */
iconv_t utf82job; /* UTF-8 to job CCSID conversion. */
t_state * dfa_states; /* List of DFA states. */
unsigned int groupid; /* Group ident counter. */
/**
*** UTF-8 strings.
**/
#pragma convert(819)
static const utf8char utf8_MIBenum[] = "MIBenum";
static const utf8char utf8_mibenum[] = "mibenum";
static const utf8char utf8_ibm_[] = "ibm-";
static const utf8char utf8_IBMCCSID[] = "IBMCCSID";
static const utf8char utf8_iana_[] = "iana-";
static const utf8char utf8_Name[] = "Name";
static const utf8char utf8_Pref_MIME_Name[] = "Preferred MIME Name";
static const utf8char utf8_Aliases[] = "Aliases";
static const utf8char utf8_html[] = "html";
static const utf8char utf8_htmluri[] = "http://www.w3.org/1999/xhtml";
static const utf8char utf8_A[] = "A";
static const utf8char utf8_C[] = "C";
static const utf8char utf8_M[] = "M";
static const utf8char utf8_N[] = "N";
static const utf8char utf8_P[] = "P";
static const utf8char utf8_T[] = "T";
static const utf8char utf8_ccsid[] = "ccsid";
static const utf8char utf8_EBCDIC[] = "EBCDIC";
static const utf8char utf8_ASCII[] = "ASCII";
static const utf8char utf8_assocnodes[] = "/ccsid_mibenum/assoc[@ccsid]";
static const utf8char utf8_aliastext[] =
"/ccsid_mibenum/assoc[@ccsid=$C]/alias/text()";
#ifdef OLDXML
static const utf8char utf8_tablerows[] =
"//table[@id='table-character-sets-1']/*/tr";
static const utf8char utf8_headerpos[] =
"count(th[text()=$T]/preceding-sibling::th)+1";
static const utf8char utf8_getmibenum[] = "number(td[$M])";
static const utf8char utf8_getprefname[] = "string(td[$P])";
static const utf8char utf8_getname[] = "string(td[$N])";
static const utf8char utf8_getaliases[] = "td[$A]/text()";
#else
static const utf8char utf8_tablerows[] =
"//html:table[@id='table-character-sets-1']/*/html:tr";
static const utf8char utf8_headerpos[] =
"count(html:th[text()=$T]/preceding-sibling::html:th)+1";
static const utf8char utf8_getmibenum[] = "number(html:td[$M])";
static const utf8char utf8_getprefname[] = "string(html:td[$P])";
static const utf8char utf8_getname[] = "string(html:td[$N])";
static const utf8char utf8_getaliases[] = "html:td[$A]/text()";
#endif
#pragma convert(0)
/**
*** UTF-8 character length table.
***
*** Index is first character byte, value is the character byte count.
**/
static signed char utf8_chlen[] = {
/* 00-07 */ 1, 1, 1, 1, 1, 1, 1, 1,
/* 08-0F */ 1, 1, 1, 1, 1, 1, 1, 1,
/* 10-17 */ 1, 1, 1, 1, 1, 1, 1, 1,
/* 18-1F */ 1, 1, 1, 1, 1, 1, 1, 1,
/* 20-27 */ 1, 1, 1, 1, 1, 1, 1, 1,
/* 28-2F */ 1, 1, 1, 1, 1, 1, 1, 1,
/* 30-37 */ 1, 1, 1, 1, 1, 1, 1, 1,
/* 38-3F */ 1, 1, 1, 1, 1, 1, 1, 1,
/* 40-47 */ 1, 1, 1, 1, 1, 1, 1, 1,
/* 48-4F */ 1, 1, 1, 1, 1, 1, 1, 1,
/* 50-57 */ 1, 1, 1, 1, 1, 1, 1, 1,
/* 58-5F */ 1, 1, 1, 1, 1, 1, 1, 1,
/* 60-67 */ 1, 1, 1, 1, 1, 1, 1, 1,
/* 68-6F */ 1, 1, 1, 1, 1, 1, 1, 1,
/* 70-77 */ 1, 1, 1, 1, 1, 1, 1, 1,
/* 78-7F */ 1, 1, 1, 1, 1, 1, 1, 1,
/* 80-87 */ -1, -1, -1, -1, -1, -1, -1, -1,
/* 88-8F */ -1, -1, -1, -1, -1, -1, -1, -1,
/* 90-97 */ -1, -1, -1, -1, -1, -1, -1, -1,
/* 98-9F */ -1, -1, -1, -1, -1, -1, -1, -1,
/* A0-A7 */ -1, -1, -1, -1, -1, -1, -1, -1,
/* A8-AF */ -1, -1, -1, -1, -1, -1, -1, -1,
/* B0-B7 */ -1, -1, -1, -1, -1, -1, -1, -1,
/* B8-BF */ -1, -1, -1, -1, -1, -1, -1, -1,
/* C0-C7 */ 2, 2, 2, 2, 2, 2, 2, 2,
/* C8-CF */ 2, 2, 2, 2, 2, 2, 2, 2,
/* D0-D7 */ 2, 2, 2, 2, 2, 2, 2, 2,
/* D8-DF */ 2, 2, 2, 2, 2, 2, 2, 2,
/* E0-E7 */ 3, 3, 3, 3, 3, 3, 3, 3,
/* E8-EF */ 3, 3, 3, 3, 3, 3, 3, 3,
/* F0-F7 */ 4, 4, 4, 4, 4, 4, 4, 4,
/* F8-FF */ 5, 5, 5, 5, 6, 6, -1, -1
};
void
chknull(void * p)
{
if (p)
return;
fprintf(stderr, "Not enough memory\n");
exit(1);
}
void
makecode(char * buf, unsigned int ccsid)
{
ccsid &= 0xFFFF;
memset(buf, 0, 32);
sprintf(buf, "IBMCCSID%05u0000000", ccsid);
}
iconv_t
iconv_open_ccsid(unsigned int ccsidout,
unsigned int ccsidin, unsigned int nullflag)
{
char fromcode[33];
char tocode[33];
makecode(fromcode, ccsidin);
makecode(tocode, ccsidout);
memset(tocode + 13, 0, sizeof tocode - 13);
if (nullflag)
fromcode[18] = '1';
return iconv_open(tocode, fromcode);
}
unsigned int
getnum(char * * cpp)
{
unsigned int n;
char * cp;
cp = *cpp;
n = 0;
while (isdigit(*cp))
n = 10 * n + *cp++ - '0';
*cpp = cp;
return n;
}
const utf8char *
hashBinaryKey(const byte * bytes, unsigned int len)
{
const byte * bp;
utf8char * key;
utf8char * cp;
unsigned int n;
unsigned int n4;
unsigned int i;
/**
*** Encode binary data in character form to be used as hash
*** table key.
**/
n = (4 * len + 2) / 3;
key = (utf8char *) malloc(n + 1);
chknull(key);
bp = bytes;
cp = key;
for (n4 = n >> 2; n4; n4--) {
i = (bp[0] << 16) | (bp[1] << 8) | bp[2];
*cp++ = 0x21 + ((i >> 18) & 0x3F);
*cp++ = 0x21 + ((i >> 12) & 0x3F);
*cp++ = 0x21 + ((i >> 6) & 0x3F);
*cp++ = 0x21 + (i & 0x3F);
bp += 3;
}
switch (n & 0x3) {
case 2:
*cp++ = 0x21 + ((*bp >> 2) & 0x3F);
*cp++ = 0x21 + ((*bp << 4) & 0x3F);
break;
case 3:
i = (bp[0] << 8) | bp[1];
*cp++ = 0x21 + ((i >> 10) & 0x3F);
*cp++ = 0x21 + ((i >> 4) & 0x3F);
*cp++ = 0x21 + ((i << 2) & 0x3F);
break;
}
*cp = '\0';
return key;
}
void *
hash_get(xmlHashTablePtr h, const void * binkey, unsigned int len)
{
const utf8char * key;
void * result;
key = hashBinaryKey((const byte *) binkey, len);
result = xmlHashLookup(h, key);
free((char *) key);
return result;
}
int
hash_add(xmlHashTablePtr h, const void * binkey, unsigned int len, void * data)
{
const utf8char * key;
int result;
key = hashBinaryKey((const byte *) binkey, len);
result = xmlHashAddEntry(h, key, data);
free((char *) key);
return result;
}
xmlDocPtr
loadXMLFile(const char * filename)
{
struct stat sbuf;
byte * databuf;
int fd;
int i;
xmlDocPtr doc;
if (stat(filename, &sbuf))
return (xmlDocPtr) NULL;
databuf = malloc(sbuf.st_size + 4);
if (!databuf)
return (xmlDocPtr) NULL;
fd = open(filename, O_RDONLY
#ifdef O_BINARY
| O_BINARY
#endif
);
if (fd < 0) {
free((char *) databuf);
return (xmlDocPtr) NULL;
}
i = read(fd, (char *) databuf, sbuf.st_size);
close(fd);
if (i != sbuf.st_size) {
free((char *) databuf);
return (xmlDocPtr) NULL;
}
databuf[i] = databuf[i + 1] = databuf[i + 2] = databuf[i + 3] = 0;
doc = xmlParseMemory((xmlChar *) databuf, i);
free((char *) databuf);
return doc;
}
int
match(char * * cpp, char * s)
{
char * cp;
int c1;
int c2;
cp = *cpp;
for (cp = *cpp; c2 = *s++; cp++) {
c1 = *cp;
if (c1 != c2) {
if (isupper(c1))
c1 = tolower(c1);
if (isupper(c2))
c2 = tolower(c2);
}
if (c1 != c2)
return 0;
}
c1 = *cp;
while (c1 == ' ' || c1 == '\t')
c1 = *++cp;
*cpp = cp;
return 1;
}
t_state *
newstate(void)
{
t_state * s;
s = (t_state *) malloc(sizeof *s);
chknull(s);
memset((char *) s, 0, sizeof *s);
return s;
}
void
unlink_transition(t_transition * t)
{
if (t->t_backnext)
t->t_backnext->t_backprev = t->t_backprev;
if (t->t_backprev)
t->t_backprev->t_backnext = t->t_backnext;
else if (t->t_to)
t->t_to->s_backward = t->t_backnext;
if (t->t_forwnext)
t->t_forwnext->t_forwprev = t->t_forwprev;
if (t->t_forwprev)
t->t_forwprev->t_forwnext = t->t_forwnext;
else if (t->t_from)
t->t_from->s_forward = t->t_forwnext;
t->t_backprev = (t_transition *) NULL;
t->t_backnext = (t_transition *) NULL;
t->t_forwprev = (t_transition *) NULL;
t->t_forwnext = (t_transition *) NULL;
t->t_from = (t_state *) NULL;
t->t_to = (t_state *) NULL;
}
void
link_transition(t_transition * t, t_state * from, t_state * to)
{
if (!from)
from = t->t_from;
if (!to)
to = t->t_to;
unlink_transition(t);
if ((t->t_from = from)) {
if ((t->t_forwnext = from->s_forward))
t->t_forwnext->t_forwprev = t;
from->s_forward = t;
}
if ((t->t_to = to)) {
if ((t->t_backnext = to->s_backward))
t->t_backnext->t_backprev = t;
to->s_backward = t;
}
}
t_transition *
newtransition(unsigned int token, t_state * from, t_state * to)
{
t_transition * t;
t = (t_transition *) malloc(sizeof *t);
chknull(t);
memset((char *) t, 0, sizeof *t);
t->t_token = token;
link_transition(t, from, to);
return t;
}
t_transition *
uniquetransition(unsigned int token, t_state * from, t_state * to)
{
t_transition * t;
for (t = from->s_forward; t; t = t->t_forwnext)
if (t->t_token == token && (t->t_to == to || !to))
return t;
return to? newtransition(token, from, to): (t_transition *) NULL;
}
int
set_position(t_powerset * s, void * e)
{
unsigned int l;
unsigned int h;
unsigned int m;
int i;
l = 0;
h = s->p_card;
while (l < h) {
m = (l + h) >> 1;
/**
*** If both pointers belong to different allocation arenas,
*** native comparison may find them neither
*** equal, nor greater, nor smaller.
*** We thus compare using memcmp() to get an orthogonal
*** result.
**/
i = memcmp(&e, s->p_set + m, sizeof e);
if (i < 0)
h = m;
else if (!i)
return m;
else
l = m + 1;
}
return l;
}
t_powerset *
set_include(t_powerset * s, void * e)
{
unsigned int pos;
unsigned int n;
if (!s) {
s = (t_powerset *) malloc(sizeof *s +
GRANULE * sizeof s->p_set);
chknull(s);
s->p_size = GRANULE;
s->p_set[GRANULE] = (t_state *) NULL;
s->p_set[0] = e;
s->p_card = 1;
return s;
}
pos = set_position(s, e);
if (pos < s->p_card && s->p_set[pos] == e)
return s;
if (s->p_card >= s->p_size) {
s->p_size += GRANULE;
s = (t_powerset *) realloc(s,
sizeof *s + s->p_size * sizeof s->p_set);
chknull(s);
s->p_set[s->p_size] = (t_state *) NULL;
}
n = s->p_card - pos;
if (n)
memmove((char *) (s->p_set + pos + 1),
(char *) (s->p_set + pos), n * sizeof s->p_set[0]);
s->p_set[pos] = e;
s->p_card++;
return s;
}
t_state *
nfatransition(t_state * to, byte token)
{
t_state * from;
from = newstate();
newtransition(token, from, to);
return from;
}
static t_state * nfadevelop(t_state * from, t_state * final, iconv_t icc,
const utf8char * name, unsigned int len);
void
nfaslice(t_state * * from, t_state * * to, iconv_t icc,
const utf8char * chr, unsigned int chlen,
const utf8char * name, unsigned int len, t_state * final)
{
char * srcp;
char * dstp;
size_t srcc;
size_t dstc;
unsigned int cnt;
t_state * f;
t_state * t;
t_transition * tp;
byte bytebuf[8];
srcp = (char *) chr;
srcc = chlen;
dstp = (char *) bytebuf;
dstc = sizeof bytebuf;
iconv(icc, &srcp, &srcc, &dstp, &dstc);
dstp = (char *) bytebuf;
cnt = sizeof bytebuf - dstc;
t = *to;
f = *from;
/**
*** Check for end of string.
**/
if (!len)
if (t && t != final)
uniquetransition(EPSILON, t, final);
else
t = final;
if (f)
while (cnt) {
tp = uniquetransition(*dstp, f, (t_state *) NULL);
if (!tp)
break;
f = tp->t_to;
dstp++;
cnt--;
}
if (!cnt) {
if (!t)
t = nfadevelop(f, final, icc, name, len);
*to = t;
return;
}
if (!t) {
t = nfadevelop((t_state *) NULL, final, icc, name, len);
*to = t;
}
if (!f)
*from = f = newstate();
while (cnt > 1)
t = nfatransition(t, dstp[--cnt]);
newtransition(*dstp, f, t);
}
t_state *
nfadevelop(t_state * from, t_state * final, iconv_t icc,
const utf8char * name, unsigned int len)
{
int chlen;
int i;
t_state * to;
int uccnt;
int lccnt;
utf8char chr;
chlen = utf8_chlen[*name];
for (i = 1; i < chlen; i++)
if ((name[i] & 0xC0) != 0x80)
break;
if (i != chlen) {
fprintf(stderr,
"Invalid UTF8 character in character set name\n");
return (t_state *) NULL;
}
to = (t_state *) NULL;
nfaslice(&from, &to,
icc, name, chlen, name + chlen, len - chlen, final);
if (*name >= UTF8_a && *name <= UTF8_z)
chr = *name - UTF8_a + UTF8_A;
else if (*name >= UTF8_A && *name <= UTF8_Z)
chr = *name - UTF8_A + UTF8_a;
else
return from;
nfaslice(&from, &to, icc, &chr, 1, name + chlen, len - chlen, final);
return from;
}
void
nfaenter(const utf8char * name, int len, t_chset * charset)
{
t_chset * s;
t_state * final;
t_state * sp;
t_symlist * lp;
/**
*** Enter case-insensitive `name' in NFA in all known
*** character codes.
*** Redundant shift state changes as well as shift state
*** differences between uppercase and lowercase are
*** not handled.
**/
if (len < 0)
len = strlen(name) + 1;
for (lp = charset->c_names; lp; lp = lp->l_next)
if (!memcmp(name, lp->l_symbol, len))
return; /* Already entered. */
lp = (t_symlist *) malloc(sizeof *lp + len);
chknull(lp);
memcpy(lp->l_symbol, name, len);
lp->l_symbol[len] = '\0';
lp->l_next = charset->c_names;
charset->c_names = lp;
final = newstate();
final->s_final = charset;
for (s = chset_list; s; s = s->c_next)
if (!iconv_open_error(s->c_fromUTF8))
sp = nfadevelop(initial_state, final,
s->c_fromUTF8, name, len);
}
unsigned int
utf8_utostr(utf8char * s, unsigned int v)
{
unsigned int d;
unsigned int i;
d = v / 10;
v -= d * 10;
i = d? utf8_utostr(s, d): 0;
s[i++] = v + UTF8_0;
s[i] = '\0';
return i;
}
unsigned int
utf8_utostrpad(utf8char * s, unsigned int v, int digits)
{
unsigned int i = utf8_utostr(s, v);
utf8char pad = UTF8_SPACE;
if (digits < 0) {
pad = UTF8_0;
digits = -digits;
}
if (i >= digits)
return i;
memmove(s + digits - i, s, i + 1);
memset(s, pad, digits - i);
return digits;
}
unsigned int
utf8_strtou(const utf8char * s)
{
unsigned int v;
while (*s == UTF8_SPACE || *s == UTF8_HT)
s++;
for (v = 0; *s >= UTF8_0 && *s <= UTF8_9;)
v = 10 * v + *s++ - UTF8_0;
return v;
}
unsigned int
getNumAttr(xmlNodePtr node, const xmlChar * name)
{
const xmlChar * s;
unsigned int val;
s = xmlGetProp(node, name);
if (!s)
return 0;
val = utf8_strtou(s);
xmlFree((xmlChar *) s);
return val;
}
void
read_assocs(const char * filename)
{
xmlDocPtr doc;
xmlXPathContextPtr ctxt;
xmlXPathObjectPtr obj;
xmlNodePtr node;
t_chset * sp;
int i;
unsigned int ccsid;
unsigned int mibenum;
utf8char symbuf[32];
doc = loadXMLFile(filename);
if (!doc) {
fprintf(stderr, "Cannot load file %s\n", filename);
exit(1);
}
ctxt = xmlXPathNewContext(doc);
obj = xmlXPathEval(utf8_assocnodes, ctxt);
if (!obj || obj->type != XPATH_NODESET || !obj->nodesetval ||
!obj->nodesetval->nodeTab || !obj->nodesetval->nodeNr) {
fprintf(stderr, "No association found in %s\n", filename);
exit(1);
}
for (i = 0; i < obj->nodesetval->nodeNr; i++) {
node = obj->nodesetval->nodeTab[i];
ccsid = getNumAttr(node, utf8_ccsid);
mibenum = getNumAttr(node, utf8_mibenum);
/**
*** Check for duplicate.
**/
for (sp = chset_list; sp; sp = sp->c_next)
if (ccsid && ccsid == sp->c_ccsid ||
mibenum && mibenum == sp->c_mibenum) {
fprintf(stderr, "Duplicate character set: ");
fprintf(stderr, "CCSID = %u/%u, ",
ccsid, sp->c_ccsid);
fprintf(stderr, "MIBenum = %u/%u\n",
mibenum, sp->c_mibenum);
break;
}
if (sp)
continue;
/**
*** Allocate the new character set.
**/
sp = (t_chset *) malloc(sizeof *sp);
chknull(sp);
memset(sp, 0, sizeof *sp);
if (!ccsid) /* Do not attempt with current job CCSID. */
set_iconv_open_error(sp->c_fromUTF8);
else {
sp->c_fromUTF8 =
iconv_open_ccsid(ccsid, C_UTF8_CCSID, 0);
if (iconv_open_error(sp->c_fromUTF8) == -1)
fprintf(stderr,
"Cannot convert into CCSID %u: ignored\n",
ccsid);
}
sp->c_ccsid = ccsid;
sp->c_mibenum = mibenum;
sp->c_next = chset_list;
chset_list = sp;
}
xmlXPathFreeObject(obj);
/**
*** Enter aliases.
**/
for (sp = chset_list; sp; sp = sp->c_next) {
strcpy(symbuf, utf8_ibm_);
utf8_utostr(symbuf + 4, sp->c_ccsid);
nfaenter(symbuf, -1, sp);
strcpy(symbuf, utf8_IBMCCSID);
utf8_utostrpad(symbuf + 8, sp->c_ccsid, -5);
nfaenter(symbuf, 13, sp); /* Not null-terminated. */
if (sp->c_mibenum) {
strcpy(symbuf, utf8_iana_);
utf8_utostr(symbuf + 5, sp->c_mibenum);
nfaenter(symbuf, -1, sp);
}
xmlXPathRegisterVariable(ctxt, utf8_C,
xmlXPathNewFloat((double) sp->c_ccsid));
obj = xmlXPathEval(utf8_aliastext, ctxt);
if (!obj || obj->type != XPATH_NODESET) {
fprintf(stderr, "getAlias failed in %s\n", filename);
exit(1);
}
if (obj->nodesetval &&
obj->nodesetval->nodeTab && obj->nodesetval->nodeNr) {
for (i = 0; i < obj->nodesetval->nodeNr; i++) {
node = obj->nodesetval->nodeTab[i];
nfaenter(node->content, -1, sp);
}
}
xmlXPathFreeObject(obj);
}
xmlXPathFreeContext(ctxt);
xmlFreeDoc(doc);
}
unsigned int
columnPosition(xmlXPathContextPtr ctxt, const xmlChar * header)
{
xmlXPathObjectPtr obj;
unsigned int res = 0;
xmlXPathRegisterVariable(ctxt, utf8_T, xmlXPathNewString(header));
obj = xmlXPathEval(utf8_headerpos, ctxt);
if (obj) {
if (obj->type == XPATH_NUMBER)
res = (unsigned int) obj->floatval;
xmlXPathFreeObject(obj);
}
return res;
}
void
read_iana(const char * filename)
{
xmlDocPtr doc;
xmlXPathContextPtr ctxt;
xmlXPathObjectPtr obj1;
xmlXPathObjectPtr obj2;
xmlNodePtr node;
int prefnamecol;
int namecol;
int mibenumcol;
int aliascol;
int mibenum;
t_chset * sp;
int n;
int i;
doc = loadXMLFile(filename);
if (!doc) {
fprintf(stderr, "Cannot load file %s\n", filename);
exit(1);
}
ctxt = xmlXPathNewContext(doc);
#ifndef OLDXML
xmlXPathRegisterNs(ctxt, utf8_html, utf8_htmluri);
#endif
obj1 = xmlXPathEval(utf8_tablerows, ctxt);
if (!obj1 || obj1->type != XPATH_NODESET || !obj1->nodesetval ||
!obj1->nodesetval->nodeTab || obj1->nodesetval->nodeNr <= 1) {
fprintf(stderr, "No data in %s\n", filename);
exit(1);
}
/**
*** Identify columns.
**/
xmlXPathSetContextNode(obj1->nodesetval->nodeTab[0], ctxt);
prefnamecol = columnPosition(ctxt, utf8_Pref_MIME_Name);
namecol = columnPosition(ctxt, utf8_Name);
mibenumcol = columnPosition(ctxt, utf8_MIBenum);
aliascol = columnPosition(ctxt, utf8_Aliases);
if (!prefnamecol || !namecol || !mibenumcol || !aliascol) {
fprintf(stderr, "Key column(s) missing in %s\n", filename);
exit(1);
}
xmlXPathRegisterVariable(ctxt, utf8_P,
xmlXPathNewFloat((double) prefnamecol));
xmlXPathRegisterVariable(ctxt, utf8_N,
xmlXPathNewFloat((double) namecol));
xmlXPathRegisterVariable(ctxt, utf8_M,
xmlXPathNewFloat((double) mibenumcol));
xmlXPathRegisterVariable(ctxt, utf8_A,
xmlXPathNewFloat((double) aliascol));
/**
*** Process each row.
**/
for (n = 1; n < obj1->nodesetval->nodeNr; n++) {
xmlXPathSetContextNode(obj1->nodesetval->nodeTab[n], ctxt);
/**
*** Get the MIBenum from current row.
*/
obj2 = xmlXPathEval(utf8_getmibenum, ctxt);
if (!obj2 || obj2->type != XPATH_NUMBER) {
fprintf(stderr, "get MIBenum failed at row %u\n", n);
exit(1);
}
if (xmlXPathIsNaN(obj2->floatval) ||
obj2->floatval < 1.0 || obj2->floatval > 65535.0 ||
((unsigned int) obj2->floatval) != obj2->floatval) {
fprintf(stderr, "invalid MIBenum at row %u\n", n);
xmlXPathFreeObject(obj2);
continue;
}
mibenum = obj2->floatval;
xmlXPathFreeObject(obj2);
/**
*** Search the associations for a corresponding CCSID.
**/
for (sp = chset_list; sp; sp = sp->c_next)
if (sp->c_mibenum == mibenum)
break;
if (!sp)
continue; /* No CCSID for this MIBenum. */
/**
*** Process preferred MIME name.
**/
obj2 = xmlXPathEval(utf8_getprefname, ctxt);
if (!obj2 || obj2->type != XPATH_STRING) {
fprintf(stderr,
"get Preferred_MIME_Name failed at row %u\n", n);
exit(1);
}
if (obj2->stringval && obj2->stringval[0])
nfaenter(obj2->stringval, -1, sp);
xmlXPathFreeObject(obj2);
/**
*** Process name.
**/
obj2 = xmlXPathEval(utf8_getname, ctxt);
if (!obj2 || obj2->type != XPATH_STRING) {
fprintf(stderr, "get name failed at row %u\n", n);
exit(1);
}
if (obj2->stringval && obj2->stringval[0])
nfaenter(obj2->stringval, -1, sp);
xmlXPathFreeObject(obj2);
/**
*** Process aliases.
**/
obj2 = xmlXPathEval(utf8_getaliases, ctxt);
if (!obj2 || obj2->type != XPATH_NODESET) {
fprintf(stderr, "get aliases failed at row %u\n", n);
exit(1);
}
if (obj2->nodesetval && obj2->nodesetval->nodeTab)
for (i = 0; i < obj2->nodesetval->nodeNr; i++) {
node = obj2->nodesetval->nodeTab[i];
if (node && node->content && node->content[0])
nfaenter(node->content, -1, sp);
}
xmlXPathFreeObject(obj2);
}
xmlXPathFreeObject(obj1);
xmlXPathFreeContext(ctxt);
xmlFreeDoc(doc);
}
t_powerset * closureset(t_powerset * dst, t_powerset * src);
t_powerset *
closure(t_powerset * dst, t_state * src)
{
t_transition * t;
unsigned int oldcard;
if (src->s_nfastates) {
/**
*** Is a DFA state: return closure of set of equivalent
*** NFA states.
**/
return closureset(dst, src->s_nfastates);
}
/**
*** Compute closure of NFA state.
**/
dst = set_include(dst, src);
for (t = src->s_forward; t; t = t->t_forwnext)
if (t->t_token == EPSILON) {
oldcard = dst->p_card;
dst = set_include(dst, t->t_to);
if (oldcard != dst->p_card)
dst = closure(dst, t->t_to);
}
return dst;
}
t_powerset *
closureset(t_powerset * dst, t_powerset * src)
{
unsigned int i;
for (i = 0; i < src->p_card; i++)
dst = closure(dst, (t_state *) src->p_set[i]);
return dst;
}
t_state *
get_dfa_state(t_state * * stack,
t_powerset * nfastates, xmlHashTablePtr sethash)
{
t_state * s;
if (s = hash_get(sethash, nfastates->p_set,
nfastates->p_card * sizeof nfastates->p_set[0])) {
/**
*** DFA state already present.
*** Release the NFA state set and return
*** the address of the old DFA state.
**/
free((char *) nfastates);
return s;
}
/**
*** Build the new state.
**/
s = newstate();
s->s_nfastates = nfastates;
s->s_next = dfa_states;
dfa_states = s;
s->s_stack = *stack;
*stack = s;
/**
*** Enter it in hash.
**/
if (hash_add(sethash, nfastates->p_set,
nfastates->p_card * sizeof nfastates->p_set[0], s))
chknull(NULL); /* Memory allocation error. */
return s;
}
int
transcmp(const void * p1, const void * p2)
{
t_transition * t1;
t_transition * t2;
t1 = *(t_transition * *) p1;
t2 = *(t_transition * *) p2;
return ((int) t1->t_token) - ((int) t2->t_token);
}
void
builddfa(void)
{
t_powerset * transset;
t_powerset * stateset;
t_state * s;
t_state * s2;
unsigned int n;
unsigned int i;
unsigned int token;
t_transition * t;
t_state * stack;
xmlHashTablePtr sethash;
unsigned int nst;
transset = set_include(NULL, NULL);
chknull(transset);
stateset = set_include(NULL, NULL);
chknull(stateset);
sethash = xmlHashCreate(1);
chknull(sethash);
dfa_states = (t_state *) NULL;
stack = (t_state *) NULL;
nst = 0;
/**
*** Build the DFA initial state.
**/
get_dfa_state(&stack, closure(NULL, initial_state), sethash);
/**
*** Build the other DFA states by looking at each
*** possible transition from stacked DFA states.
**/
do {
if (!(++nst % 100))
fprintf(stderr, "%u DFA states\n", nst);
s = stack;
stack = s->s_stack;
s->s_stack = (t_state *) NULL;
/**
*** Build a set of all non-epsilon transitions from this
*** state.
**/
transset->p_card = 0;
for (n = 0; n < s->s_nfastates->p_card; n++) {
s2 = s->s_nfastates->p_set[n];
for (t = s2->s_forward; t; t = t->t_forwnext)
if (t->t_token != EPSILON) {
transset = set_include(transset, t);
chknull(transset);
}
}
/**
*** Sort transitions by token.
**/
qsort(transset->p_set, transset->p_card,
sizeof transset->p_set[0], transcmp);
/**
*** Process all transitions, grouping them by token.
**/
stateset->p_card = 0;
token = EPSILON;
for (i = 0; i < transset->p_card; i++) {
t = transset->p_set[i];
if (token != t->t_token) {
if (stateset->p_card) {
/**
*** Get the equivalent DFA state
*** and create transition.
**/
newtransition(token, s,
get_dfa_state(&stack,
closureset(NULL, stateset),
sethash));
stateset->p_card = 0;
}
token = t->t_token;
}
stateset = set_include(stateset, t->t_to);
}
if (stateset->p_card)
newtransition(token, s, get_dfa_state(&stack,
closureset(NULL, stateset), sethash));
} while (stack);
free((char *) transset);
free((char *) stateset);
xmlHashFree(sethash, NULL);
/**
*** Reverse the state list to get the initial state first,
*** check for ambiguous prefixes, determine final states,
*** destroy NFA state sets.
**/
while (s = dfa_states) {
dfa_states = s->s_next;
s->s_next = stack;
stack = s;
stateset = s->s_nfastates;
s->s_nfastates = (t_powerset *) NULL;
for (n = 0; n < stateset->p_card; n++) {
s2 = (t_state *) stateset->p_set[n];
if (s2->s_final) {
if (s->s_final && s->s_final != s2->s_final)
fprintf(stderr,
"Ambiguous name for CCSIDs %u/%u\n",
s->s_final->c_ccsid,
s2->s_final->c_ccsid);
s->s_final = s2->s_final;
}
}
free((char *) stateset);
}
dfa_states = stack;
}
void
deletenfa(void)
{
t_transition * t;
t_state * s;
t_state * u;
t_state * stack;
stack = initial_state;
stack->s_stack = (t_state *) NULL;
while ((s = stack)) {
stack = s->s_stack;
while ((t = s->s_forward)) {
u = t->t_to;
unlink_transition(t);
free((char *) t);
if (!u->s_backward) {
u->s_stack = stack;
stack = u;
}
}
free((char *) s);
}
}
t_stategroup *
newgroup(void)
{
t_stategroup * g;
g = (t_stategroup *) malloc(sizeof *g);
chknull(g);
memset((char *) g, 0, sizeof *g);
g->g_id = groupid++;
return g;
}
void
optimizedfa(void)
{
unsigned int i;
xmlHashTablePtr h;
t_state * s1;
t_state * s2;
t_state * finstates;
t_state * * sp;
t_stategroup * g1;
t_stategroup * g2;
t_stategroup * ghead;
t_transition * t1;
t_transition * t2;
unsigned int done;
unsigned int startgroup;
unsigned int gtrans[1 << (8 * sizeof(unsigned char))];
/**
*** Reduce DFA state count.
**/
groupid = 0;
ghead = (t_stategroup *) NULL;
/**
*** First split: non-final and each distinct final states.
**/
h = xmlHashCreate(4);
chknull(h);
for (s1 = dfa_states; s1; s1 = s1->s_next) {
if (!(g1 = hash_get(h, &s1->s_final, sizeof s1->s_final))) {
g1 = newgroup();
g1->g_next = ghead;
ghead = g1;
if (hash_add(h, &s1->s_final, sizeof s1->s_final, g1))
chknull(NULL); /* Memory allocation error. */
}
s1->s_index = g1->g_id;
s1->s_stack = g1->g_member;
g1->g_member = s1;
}
xmlHashFree(h, NULL);
/**
*** Subsequent splits: states that have the same forward
*** transition tokens to states in the same group.
**/
do {
done = 1;
for (g2 = ghead; g2; g2 = g2->g_next) {
s1 = g2->g_member;
if (!s1->s_stack)
continue;
h = xmlHashCreate(1);
chknull(h);
/**
*** Build the group transition map.
**/
memset((char *) gtrans, ~0, sizeof gtrans);
for (t1 = s1->s_forward; t1; t1 = t1->t_forwnext)
gtrans[t1->t_token] = t1->t_to->s_index;
if (hash_add(h, gtrans, sizeof gtrans, g2))
chknull(NULL);
/**
*** Process other states in group.
**/
sp = &s1->s_stack;
s1 = *sp;
do {
*sp = s1->s_stack;
/**
*** Build the transition map.
**/
memset((char *) gtrans, ~0, sizeof gtrans);
for (t1 = s1->s_forward;
t1; t1 = t1->t_forwnext)
gtrans[t1->t_token] = t1->t_to->s_index;
g1 = hash_get(h, gtrans, sizeof gtrans);
if (g1 == g2) {
*sp = s1;
sp = &s1->s_stack;
}
else {
if (!g1) {
g1 = newgroup();
g1->g_next = ghead;
ghead = g1;
if (hash_add(h, gtrans,
sizeof gtrans, g1))
chknull(NULL);
}
s1->s_index = g1->g_id;
s1->s_stack = g1->g_member;
g1->g_member = s1;
done = 0;
}
} while (s1 = *sp);
xmlHashFree(h, NULL);
}
} while (!done);
/**
*** Establish group leaders and remap transitions.
**/
startgroup = dfa_states->s_index;
for (g1 = ghead; g1; g1 = g1->g_next)
for (s1 = g1->g_member->s_stack; s1; s1 = s1->s_stack)
for (t1 = s1->s_backward; t1; t1 = t2) {
t2 = t1->t_backnext;
link_transition(t1, NULL, g1->g_member);
}
/**
*** Remove redundant states and transitions.
**/
for (g1 = ghead; g1; g1 = g1->g_next) {
g1->g_member->s_next = (t_state *) NULL;
while ((s1 = g1->g_member->s_stack)) {
g1->g_member->s_stack = s1->s_stack;
for (t1 = s1->s_forward; t1; t1 = t2) {
t2 = t1->t_forwnext;
unlink_transition(t1);
free((char *) t1);
}
free((char *) s1);
}
}
/**
*** Remove group support and relink DFA states.
**/
dfa_states = (t_state *) NULL;
s2 = (t_state *) NULL;
finstates = (t_state *) NULL;
while (g1 = ghead) {
ghead = g1->g_next;
s1 = g1->g_member;
if (g1->g_id == startgroup)
dfa_states = s1; /* Keep start state first. */
else if (s1->s_final) { /* Then final states. */
s1->s_next = finstates;
finstates = s1;
}
else { /* Finish with non-final states. */
s1->s_next = s2;
s2 = s1;
}
free((char *) g1);
}
for (dfa_states->s_next = finstates; finstates->s_next;)
finstates = finstates->s_next;
finstates->s_next = s2;
}
const char *
inttype(unsigned long max)
{
int i;
for (i = 0; max; i++)
max >>= 1;
if (i > 8 * sizeof(unsigned int))
return "unsigned long";
if (i > 8 * sizeof(unsigned short))
return "unsigned int";
if (i > 8 * sizeof(unsigned char))
return "unsigned short";
return "unsigned char";
}
listids(FILE * fp)
{
unsigned int pos;
t_chset * cp;
t_symlist * lp;
char * srcp;
char * dstp;
size_t srcc;
size_t dstc;
char buf[80];
fprintf(fp, "/**\n*** CCSID For arg Recognized name.\n");
pos = 0;
for (cp = chset_list; cp; cp = cp->c_next) {
if (pos) {
fprintf(fp, "\n");
pos = 0;
}
if (!cp->c_names)
continue;
pos = fprintf(fp, "*** %5u %c ", cp->c_ccsid,
iconv_open_error(cp->c_fromUTF8)? ' ': 'X');
for (lp = cp->c_names; lp; lp = lp->l_next) {
srcp = (char *) lp->l_symbol;
srcc = strlen(srcp);
dstp = buf;
dstc = sizeof buf;
iconv(utf82job, &srcp, &srcc, &dstp, &dstc);
srcc = dstp - buf;
if (pos + srcc > 79) {
fprintf(fp, "\n***%22c", ' ');
pos = 25;
}
pos += fprintf(fp, " %.*s", srcc, buf);
}
}
if (pos)
fprintf(fp, "\n");
fprintf(fp, "**/\n\n");
}
void
generate(FILE * fp)
{
unsigned int nstates;
unsigned int ntrans;
unsigned int maxfinal;
t_state * s;
t_transition * t;
unsigned int i;
unsigned int pos;
char * ns;
/**
*** Assign indexes to states and transitions.
**/
nstates = 0;
ntrans = 0;
maxfinal = 0;
for (s = dfa_states; s; s = s->s_next) {
s->s_index = nstates++;
if (s->s_final)
maxfinal = nstates;
for (t = s->s_forward; t; t = t->t_forwnext)
t->t_index = ntrans++;
}
fprintf(fp,
"/**\n*** %u states, %u finals, %u transitions.\n**/\n\n",
nstates, maxfinal, ntrans);
fprintf(stderr, "%u states, %u finals, %u transitions.\n",
nstates, maxfinal, ntrans);
/**
*** Generate types.
**/
fprintf(fp, "typedef unsigned short t_ccsid;\n");
fprintf(fp, "typedef %-23s t_staterange;\n", inttype(nstates));
fprintf(fp, "typedef %-23s t_transrange;\n\n", inttype(ntrans));
/**
*** Generate first transition index for each state.
**/
fprintf(fp, "static t_transrange trans_array[] = {\n");
pos = 0;
ntrans = 0;
for (s = dfa_states; s; s = s->s_next) {
pos += fprintf(fp, " %u,", ntrans);
if (pos > 72) {
fprintf(fp, "\n");
pos = 0;
}
for (t = s->s_forward; t; t = t->t_forwnext)
ntrans++;
}
fprintf(fp, " %u\n};\n\n", ntrans);
/**
*** Generate final state info.
**/
fprintf(fp, "static t_ccsid final_array[] = {\n");
pos = 0;
ns ="";
i = 0;
for (s = dfa_states; s && i++ < maxfinal; s = s->s_next) {
pos += fprintf(fp, "%s", ns);
ns = ",";
if (pos > 72) {
fprintf(fp, "\n");
pos = 0;
}
pos += fprintf(fp, " %u",
s->s_final? s->s_final->c_ccsid + 1: 0);
}
fprintf(fp, "\n};\n\n");
/**
*** Generate goto table.
**/
fprintf(fp, "static t_staterange goto_array[] = {\n");
pos = 0;
for (s = dfa_states; s; s = s->s_next)
for (t = s->s_forward; t; t = t->t_forwnext) {
pos += fprintf(fp, " %u,", t->t_to->s_index);
if (pos > 72) {
fprintf(fp, "\n");
pos = 0;
}
}
fprintf(fp, " %u\n};\n\n", nstates);
/**
*** Generate transition label table.
**/
fprintf(fp, "static unsigned char label_array[] = {\n");
pos = 0;
ns ="";
for (s = dfa_states; s; s = s->s_next)
for (t = s->s_forward; t; t = t->t_forwnext) {
pos += fprintf(fp, "%s", ns);
ns = ",";
if (pos > 72) {
fprintf(fp, "\n");
pos = 0;
}
pos += fprintf(fp, " 0x%02X", t->t_token);
}
fprintf(fp, "\n};\n", nstates);
}
main(argc, argv)
int argc;
char * * argv;
{
FILE * fp;
t_chset * csp;
char symbuf[20];
chset_list = (t_chset *) NULL;
initial_state = newstate();
job2utf8 = iconv_open_ccsid(C_UTF8_CCSID, C_SOURCE_CCSID, 0);
utf82job = iconv_open_ccsid(C_SOURCE_CCSID, C_UTF8_CCSID, 0);
if (argc != 4) {
fprintf(stderr, "Usage: %s <ccsid-mibenum file> ", *argv);
fprintf(stderr, "<iana-character-set file> <output file>\n");
exit(1);
}
/**
*** Read CCSID/MIBenum associations. Define special names.
**/
read_assocs(argv[1]);
/**
*** Read character set names and establish the case-independent
*** name DFA in all possible CCSIDs.
**/
read_iana(argv[2]);
/**
*** Build DFA from NFA.
**/
builddfa();
/**
*** Delete NFA.
**/
deletenfa();
/**
*** Minimize the DFA state count.
**/
optimizedfa();
/**
*** Generate the table.
**/
fp = fopen(argv[3], "w+");
if (!fp) {
perror(argv[3]);
exit(1);
}
fprintf(fp, "/**\n");
fprintf(fp, "*** Character set names table.\n");
fprintf(fp, "*** Generated by program BLDCSNDFA from");
fprintf(fp, " IANA character set assignment file\n");
fprintf(fp, "*** and CCSID/MIBenum equivalence file.\n");
fprintf(fp, "*** *** Do not edit by hand ***\n");
fprintf(fp, "**/\n\n");
listids(fp);
generate(fp);
if (ferror(fp)) {
perror(argv[3]);
fclose(fp);
exit(1);
}
fclose(fp);
iconv_close(job2utf8);
iconv_close(utf82job);
exit(0);
}