blob: 709d503668513951bed84dfc767f0525575300cb [file] [log] [blame]
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
//
// An Env is an interface used by the rocksdb implementation to access
// operating system functionality like the filesystem etc. Callers
// may wish to provide a custom Env object when opening a database to
// get fine gain control; e.g., to rate limit file system operations.
//
// All Env implementations are safe for concurrent access from
// multiple threads without any external synchronization.
#ifndef STORAGE_ROCKSDB_INCLUDE_ENV_H_
#define STORAGE_ROCKSDB_INCLUDE_ENV_H_
#include <stdint.h>
#include <cstdarg>
#include <functional>
#include <limits>
#include <memory>
#include <string>
#include <vector>
#include "rocksdb/status.h"
#include "rocksdb/thread_status.h"
#ifdef _WIN32
// Windows API macro interference
#undef DeleteFile
#undef GetCurrentTime
#endif
namespace rocksdb {
class FileLock;
class Logger;
class RandomAccessFile;
class SequentialFile;
class Slice;
class WritableFile;
class RandomRWFile;
class Directory;
struct DBOptions;
struct ImmutableDBOptions;
class RateLimiter;
class ThreadStatusUpdater;
struct ThreadStatus;
using std::unique_ptr;
using std::shared_ptr;
const size_t kDefaultPageSize = 4 * 1024;
// Options while opening a file to read/write
struct EnvOptions {
// Construct with default Options
EnvOptions();
// Construct from Options
explicit EnvOptions(const DBOptions& options);
// If true, then use mmap to read data
bool use_mmap_reads = false;
// If true, then use mmap to write data
bool use_mmap_writes = true;
// If true, then use O_DIRECT for reading data
bool use_direct_reads = false;
// If true, then use O_DIRECT for writing data
bool use_direct_writes = false;
// If false, fallocate() calls are bypassed
bool allow_fallocate = true;
// If true, set the FD_CLOEXEC on open fd.
bool set_fd_cloexec = true;
// Allows OS to incrementally sync files to disk while they are being
// written, in the background. Issue one request for every bytes_per_sync
// written. 0 turns it off.
// Default: 0
uint64_t bytes_per_sync = 0;
// If true, we will preallocate the file with FALLOC_FL_KEEP_SIZE flag, which
// means that file size won't change as part of preallocation.
// If false, preallocation will also change the file size. This option will
// improve the performance in workloads where you sync the data on every
// write. By default, we set it to true for MANIFEST writes and false for
// WAL writes
bool fallocate_with_keep_size = true;
// See DBOptions doc
size_t compaction_readahead_size;
// See DBOptions doc
size_t random_access_max_buffer_size;
// See DBOptions doc
size_t writable_file_max_buffer_size = 1024 * 1024;
// If not nullptr, write rate limiting is enabled for flush and compaction
RateLimiter* rate_limiter = nullptr;
};
class Env {
public:
struct FileAttributes {
// File name
std::string name;
// Size of file in bytes
uint64_t size_bytes;
};
Env() : thread_status_updater_(nullptr) {}
virtual ~Env();
// Return a default environment suitable for the current operating
// system. Sophisticated users may wish to provide their own Env
// implementation instead of relying on this default environment.
//
// The result of Default() belongs to rocksdb and must never be deleted.
static Env* Default();
// Create a brand new sequentially-readable file with the specified name.
// On success, stores a pointer to the new file in *result and returns OK.
// On failure stores nullptr in *result and returns non-OK. If the file does
// not exist, returns a non-OK status.
//
// The returned file will only be accessed by one thread at a time.
virtual Status NewSequentialFile(const std::string& fname,
unique_ptr<SequentialFile>* result,
const EnvOptions& options)
= 0;
// Create a brand new random access read-only file with the
// specified name. On success, stores a pointer to the new file in
// *result and returns OK. On failure stores nullptr in *result and
// returns non-OK. If the file does not exist, returns a non-OK
// status.
//
// The returned file may be concurrently accessed by multiple threads.
virtual Status NewRandomAccessFile(const std::string& fname,
unique_ptr<RandomAccessFile>* result,
const EnvOptions& options)
= 0;
// Create an object that writes to a new file with the specified
// name. Deletes any existing file with the same name and creates a
// new file. On success, stores a pointer to the new file in
// *result and returns OK. On failure stores nullptr in *result and
// returns non-OK.
//
// The returned file will only be accessed by one thread at a time.
virtual Status NewWritableFile(const std::string& fname,
unique_ptr<WritableFile>* result,
const EnvOptions& options) = 0;
// Create an object that writes to a new file with the specified
// name. Deletes any existing file with the same name and creates a
// new file. On success, stores a pointer to the new file in
// *result and returns OK. On failure stores nullptr in *result and
// returns non-OK.
//
// The returned file will only be accessed by one thread at a time.
virtual Status ReopenWritableFile(const std::string& fname,
unique_ptr<WritableFile>* result,
const EnvOptions& options) {
return Status::NotSupported();
}
// Reuse an existing file by renaming it and opening it as writable.
virtual Status ReuseWritableFile(const std::string& fname,
const std::string& old_fname,
unique_ptr<WritableFile>* result,
const EnvOptions& options);
// Open `fname` for random read and write, if file doesn't exist the file
// will be created. On success, stores a pointer to the new file in
// *result and returns OK. On failure returns non-OK.
//
// The returned file will only be accessed by one thread at a time.
virtual Status NewRandomRWFile(const std::string& fname,
unique_ptr<RandomRWFile>* result,
const EnvOptions& options) {
return Status::NotSupported("RandomRWFile is not implemented in this Env");
}
// Create an object that represents a directory. Will fail if directory
// doesn't exist. If the directory exists, it will open the directory
// and create a new Directory object.
//
// On success, stores a pointer to the new Directory in
// *result and returns OK. On failure stores nullptr in *result and
// returns non-OK.
virtual Status NewDirectory(const std::string& name,
unique_ptr<Directory>* result) = 0;
// Returns OK if the named file exists.
// NotFound if the named file does not exist,
// the calling process does not have permission to determine
// whether this file exists, or if the path is invalid.
// IOError if an IO Error was encountered
virtual Status FileExists(const std::string& fname) = 0;
// Store in *result the names of the children of the specified directory.
// The names are relative to "dir".
// Original contents of *results are dropped.
// Returns OK if "dir" exists and "*result" contains its children.
// NotFound if "dir" does not exist, the calling process does not have
// permission to access "dir", or if "dir" is invalid.
// IOError if an IO Error was encountered
virtual Status GetChildren(const std::string& dir,
std::vector<std::string>* result) = 0;
// Store in *result the attributes of the children of the specified directory.
// In case the implementation lists the directory prior to iterating the files
// and files are concurrently deleted, the deleted files will be omitted from
// result.
// The name attributes are relative to "dir".
// Original contents of *results are dropped.
// Returns OK if "dir" exists and "*result" contains its children.
// NotFound if "dir" does not exist, the calling process does not have
// permission to access "dir", or if "dir" is invalid.
// IOError if an IO Error was encountered
virtual Status GetChildrenFileAttributes(const std::string& dir,
std::vector<FileAttributes>* result);
// Delete the named file.
virtual Status DeleteFile(const std::string& fname) = 0;
// Create the specified directory. Returns error if directory exists.
virtual Status CreateDir(const std::string& dirname) = 0;
// Creates directory if missing. Return Ok if it exists, or successful in
// Creating.
virtual Status CreateDirIfMissing(const std::string& dirname) = 0;
// Delete the specified directory.
virtual Status DeleteDir(const std::string& dirname) = 0;
// Store the size of fname in *file_size.
virtual Status GetFileSize(const std::string& fname, uint64_t* file_size) = 0;
// Store the last modification time of fname in *file_mtime.
virtual Status GetFileModificationTime(const std::string& fname,
uint64_t* file_mtime) = 0;
// Rename file src to target.
virtual Status RenameFile(const std::string& src,
const std::string& target) = 0;
// Hard Link file src to target.
virtual Status LinkFile(const std::string& src, const std::string& target) {
return Status::NotSupported("LinkFile is not supported for this Env");
}
// Lock the specified file. Used to prevent concurrent access to
// the same db by multiple processes. On failure, stores nullptr in
// *lock and returns non-OK.
//
// On success, stores a pointer to the object that represents the
// acquired lock in *lock and returns OK. The caller should call
// UnlockFile(*lock) to release the lock. If the process exits,
// the lock will be automatically released.
//
// If somebody else already holds the lock, finishes immediately
// with a failure. I.e., this call does not wait for existing locks
// to go away.
//
// May create the named file if it does not already exist.
virtual Status LockFile(const std::string& fname, FileLock** lock) = 0;
// Release the lock acquired by a previous successful call to LockFile.
// REQUIRES: lock was returned by a successful LockFile() call
// REQUIRES: lock has not already been unlocked.
virtual Status UnlockFile(FileLock* lock) = 0;
// Priority for scheduling job in thread pool
enum Priority { BOTTOM, LOW, HIGH, TOTAL };
// Priority for requesting bytes in rate limiter scheduler
enum IOPriority {
IO_LOW = 0,
IO_HIGH = 1,
IO_TOTAL = 2
};
// Arrange to run "(*function)(arg)" once in a background thread, in
// the thread pool specified by pri. By default, jobs go to the 'LOW'
// priority thread pool.
// "function" may run in an unspecified thread. Multiple functions
// added to the same Env may run concurrently in different threads.
// I.e., the caller may not assume that background work items are
// serialized.
// When the UnSchedule function is called, the unschedFunction
// registered at the time of Schedule is invoked with arg as a parameter.
virtual void Schedule(void (*function)(void* arg), void* arg,
Priority pri = LOW, void* tag = nullptr,
void (*unschedFunction)(void* arg) = 0) = 0;
// Arrange to remove jobs for given arg from the queue_ if they are not
// already scheduled. Caller is expected to have exclusive lock on arg.
virtual int UnSchedule(void* arg, Priority pri) { return 0; }
// Start a new thread, invoking "function(arg)" within the new thread.
// When "function(arg)" returns, the thread will be destroyed.
virtual void StartThread(void (*function)(void* arg), void* arg) = 0;
// Wait for all threads started by StartThread to terminate.
virtual void WaitForJoin() {}
// Get thread pool queue length for specific thread pool.
virtual unsigned int GetThreadPoolQueueLen(Priority pri = LOW) const {
return 0;
}
// *path is set to a temporary directory that can be used for testing. It may
// or many not have just been created. The directory may or may not differ
// between runs of the same process, but subsequent calls will return the
// same directory.
virtual Status GetTestDirectory(std::string* path) = 0;
// Create and return a log file for storing informational messages.
virtual Status NewLogger(const std::string& fname,
shared_ptr<Logger>* result) = 0;
// Returns the number of micro-seconds since some fixed point in time.
// It is often used as system time such as in GenericRateLimiter
// and other places so a port needs to return system time in order to work.
virtual uint64_t NowMicros() = 0;
// Returns the number of nano-seconds since some fixed point in time. Only
// useful for computing deltas of time in one run.
// Default implementation simply relies on NowMicros.
// In platform-specific implementations, NowNanos() should return time points
// that are MONOTONIC.
virtual uint64_t NowNanos() {
return NowMicros() * 1000;
}
// Sleep/delay the thread for the perscribed number of micro-seconds.
virtual void SleepForMicroseconds(int micros) = 0;
// Get the current host name.
virtual Status GetHostName(char* name, uint64_t len) = 0;
// Get the number of seconds since the Epoch, 1970-01-01 00:00:00 (UTC).
// Only overwrites *unix_time on success.
virtual Status GetCurrentTime(int64_t* unix_time) = 0;
// Get full directory name for this db.
virtual Status GetAbsolutePath(const std::string& db_path,
std::string* output_path) = 0;
// The number of background worker threads of a specific thread pool
// for this environment. 'LOW' is the default pool.
// default number: 1
virtual void SetBackgroundThreads(int number, Priority pri = LOW) = 0;
virtual int GetBackgroundThreads(Priority pri = LOW) = 0;
// Enlarge number of background worker threads of a specific thread pool
// for this environment if it is smaller than specified. 'LOW' is the default
// pool.
virtual void IncBackgroundThreadsIfNeeded(int number, Priority pri) = 0;
// Lower IO priority for threads from the specified pool.
virtual void LowerThreadPoolIOPriority(Priority pool = LOW) {}
// Converts seconds-since-Jan-01-1970 to a printable string
virtual std::string TimeToString(uint64_t time) = 0;
// Generates a unique id that can be used to identify a db
virtual std::string GenerateUniqueId();
// OptimizeForLogWrite will create a new EnvOptions object that is a copy of
// the EnvOptions in the parameters, but is optimized for reading log files.
virtual EnvOptions OptimizeForLogRead(const EnvOptions& env_options) const;
// OptimizeForManifestRead will create a new EnvOptions object that is a copy
// of the EnvOptions in the parameters, but is optimized for reading manifest
// files.
virtual EnvOptions OptimizeForManifestRead(
const EnvOptions& env_options) const;
// OptimizeForLogWrite will create a new EnvOptions object that is a copy of
// the EnvOptions in the parameters, but is optimized for writing log files.
// Default implementation returns the copy of the same object.
virtual EnvOptions OptimizeForLogWrite(const EnvOptions& env_options,
const DBOptions& db_options) const;
// OptimizeForManifestWrite will create a new EnvOptions object that is a copy
// of the EnvOptions in the parameters, but is optimized for writing manifest
// files. Default implementation returns the copy of the same object.
virtual EnvOptions OptimizeForManifestWrite(
const EnvOptions& env_options) const;
// OptimizeForCompactionTableWrite will create a new EnvOptions object that is
// a copy of the EnvOptions in the parameters, but is optimized for writing
// table files.
virtual EnvOptions OptimizeForCompactionTableWrite(
const EnvOptions& env_options,
const ImmutableDBOptions& db_options) const;
// OptimizeForCompactionTableWrite will create a new EnvOptions object that
// is a copy of the EnvOptions in the parameters, but is optimized for reading
// table files.
virtual EnvOptions OptimizeForCompactionTableRead(
const EnvOptions& env_options,
const ImmutableDBOptions& db_options) const;
// Returns the status of all threads that belong to the current Env.
virtual Status GetThreadList(std::vector<ThreadStatus>* thread_list) {
return Status::NotSupported("Not supported.");
}
// Returns the pointer to ThreadStatusUpdater. This function will be
// used in RocksDB internally to update thread status and supports
// GetThreadList().
virtual ThreadStatusUpdater* GetThreadStatusUpdater() const {
return thread_status_updater_;
}
// Returns the ID of the current thread.
virtual uint64_t GetThreadID() const;
protected:
// The pointer to an internal structure that will update the
// status of each thread.
ThreadStatusUpdater* thread_status_updater_;
private:
// No copying allowed
Env(const Env&);
void operator=(const Env&);
};
// The factory function to construct a ThreadStatusUpdater. Any Env
// that supports GetThreadList() feature should call this function in its
// constructor to initialize thread_status_updater_.
ThreadStatusUpdater* CreateThreadStatusUpdater();
// A file abstraction for reading sequentially through a file
class SequentialFile {
public:
SequentialFile() { }
virtual ~SequentialFile();
// Read up to "n" bytes from the file. "scratch[0..n-1]" may be
// written by this routine. Sets "*result" to the data that was
// read (including if fewer than "n" bytes were successfully read).
// May set "*result" to point at data in "scratch[0..n-1]", so
// "scratch[0..n-1]" must be live when "*result" is used.
// If an error was encountered, returns a non-OK status.
//
// REQUIRES: External synchronization
virtual Status Read(size_t n, Slice* result, char* scratch) = 0;
// Skip "n" bytes from the file. This is guaranteed to be no
// slower that reading the same data, but may be faster.
//
// If end of file is reached, skipping will stop at the end of the
// file, and Skip will return OK.
//
// REQUIRES: External synchronization
virtual Status Skip(uint64_t n) = 0;
// Indicates the upper layers if the current SequentialFile implementation
// uses direct IO.
virtual bool use_direct_io() const { return false; }
// Use the returned alignment value to allocate
// aligned buffer for Direct I/O
virtual size_t GetRequiredBufferAlignment() const { return kDefaultPageSize; }
// Remove any kind of caching of data from the offset to offset+length
// of this file. If the length is 0, then it refers to the end of file.
// If the system is not caching the file contents, then this is a noop.
virtual Status InvalidateCache(size_t offset, size_t length) {
return Status::NotSupported("InvalidateCache not supported.");
}
// Positioned Read for direct I/O
// If Direct I/O enabled, offset, n, and scratch should be properly aligned
virtual Status PositionedRead(uint64_t offset, size_t n, Slice* result,
char* scratch) {
return Status::NotSupported();
}
};
// A file abstraction for randomly reading the contents of a file.
class RandomAccessFile {
public:
RandomAccessFile() { }
virtual ~RandomAccessFile();
// Read up to "n" bytes from the file starting at "offset".
// "scratch[0..n-1]" may be written by this routine. Sets "*result"
// to the data that was read (including if fewer than "n" bytes were
// successfully read). May set "*result" to point at data in
// "scratch[0..n-1]", so "scratch[0..n-1]" must be live when
// "*result" is used. If an error was encountered, returns a non-OK
// status.
//
// Safe for concurrent use by multiple threads.
// If Direct I/O enabled, offset, n, and scratch should be aligned properly.
virtual Status Read(uint64_t offset, size_t n, Slice* result,
char* scratch) const = 0;
// Readahead the file starting from offset by n bytes for caching.
virtual Status Prefetch(uint64_t offset, size_t n) {
return Status::OK();
}
// Tries to get an unique ID for this file that will be the same each time
// the file is opened (and will stay the same while the file is open).
// Furthermore, it tries to make this ID at most "max_size" bytes. If such an
// ID can be created this function returns the length of the ID and places it
// in "id"; otherwise, this function returns 0, in which case "id"
// may not have been modified.
//
// This function guarantees, for IDs from a given environment, two unique ids
// cannot be made equal to each other by adding arbitrary bytes to one of
// them. That is, no unique ID is the prefix of another.
//
// This function guarantees that the returned ID will not be interpretable as
// a single varint.
//
// Note: these IDs are only valid for the duration of the process.
virtual size_t GetUniqueId(char* id, size_t max_size) const {
return 0; // Default implementation to prevent issues with backwards
// compatibility.
};
enum AccessPattern { NORMAL, RANDOM, SEQUENTIAL, WILLNEED, DONTNEED };
virtual void Hint(AccessPattern pattern) {}
// Indicates the upper layers if the current RandomAccessFile implementation
// uses direct IO.
virtual bool use_direct_io() const { return false; }
// Use the returned alignment value to allocate
// aligned buffer for Direct I/O
virtual size_t GetRequiredBufferAlignment() const { return kDefaultPageSize; }
// Remove any kind of caching of data from the offset to offset+length
// of this file. If the length is 0, then it refers to the end of file.
// If the system is not caching the file contents, then this is a noop.
virtual Status InvalidateCache(size_t offset, size_t length) {
return Status::NotSupported("InvalidateCache not supported.");
}
};
// A file abstraction for sequential writing. The implementation
// must provide buffering since callers may append small fragments
// at a time to the file.
class WritableFile {
public:
WritableFile()
: last_preallocated_block_(0),
preallocation_block_size_(0),
io_priority_(Env::IO_TOTAL) {
}
virtual ~WritableFile();
// Append data to the end of the file
// Note: A WriteabelFile object must support either Append or
// PositionedAppend, so the users cannot mix the two.
virtual Status Append(const Slice& data) = 0;
// PositionedAppend data to the specified offset. The new EOF after append
// must be larger than the previous EOF. This is to be used when writes are
// not backed by OS buffers and hence has to always start from the start of
// the sector. The implementation thus needs to also rewrite the last
// partial sector.
// Note: PositionAppend does not guarantee moving the file offset after the
// write. A WritableFile object must support either Append or
// PositionedAppend, so the users cannot mix the two.
//
// PositionedAppend() can only happen on the page/sector boundaries. For that
// reason, if the last write was an incomplete sector we still need to rewind
// back to the nearest sector/page and rewrite the portion of it with whatever
// we need to add. We need to keep where we stop writing.
//
// PositionedAppend() can only write whole sectors. For that reason we have to
// pad with zeros for the last write and trim the file when closing according
// to the position we keep in the previous step.
//
// PositionedAppend() requires aligned buffer to be passed in. The alignment
// required is queried via GetRequiredBufferAlignment()
virtual Status PositionedAppend(const Slice& /* data */, uint64_t /* offset */) {
return Status::NotSupported();
}
// Truncate is necessary to trim the file to the correct size
// before closing. It is not always possible to keep track of the file
// size due to whole pages writes. The behavior is undefined if called
// with other writes to follow.
virtual Status Truncate(uint64_t size) {
return Status::OK();
}
virtual Status Close() = 0;
virtual Status Flush() = 0;
virtual Status Sync() = 0; // sync data
/*
* Sync data and/or metadata as well.
* By default, sync only data.
* Override this method for environments where we need to sync
* metadata as well.
*/
virtual Status Fsync() {
return Sync();
}
// true if Sync() and Fsync() are safe to call concurrently with Append()
// and Flush().
virtual bool IsSyncThreadSafe() const {
return false;
}
// Indicates the upper layers if the current WritableFile implementation
// uses direct IO.
virtual bool use_direct_io() const { return false; }
// Use the returned alignment value to allocate
// aligned buffer for Direct I/O
virtual size_t GetRequiredBufferAlignment() const { return kDefaultPageSize; }
/*
* Change the priority in rate limiter if rate limiting is enabled.
* If rate limiting is not enabled, this call has no effect.
*/
virtual void SetIOPriority(Env::IOPriority pri) {
io_priority_ = pri;
}
virtual Env::IOPriority GetIOPriority() { return io_priority_; }
/*
* Get the size of valid data in the file.
*/
virtual uint64_t GetFileSize() {
return 0;
}
/*
* Get and set the default pre-allocation block size for writes to
* this file. If non-zero, then Allocate will be used to extend the
* underlying storage of a file (generally via fallocate) if the Env
* instance supports it.
*/
virtual void SetPreallocationBlockSize(size_t size) {
preallocation_block_size_ = size;
}
virtual void GetPreallocationStatus(size_t* block_size,
size_t* last_allocated_block) {
*last_allocated_block = last_preallocated_block_;
*block_size = preallocation_block_size_;
}
// For documentation, refer to RandomAccessFile::GetUniqueId()
virtual size_t GetUniqueId(char* id, size_t max_size) const {
return 0; // Default implementation to prevent issues with backwards
}
// Remove any kind of caching of data from the offset to offset+length
// of this file. If the length is 0, then it refers to the end of file.
// If the system is not caching the file contents, then this is a noop.
// This call has no effect on dirty pages in the cache.
virtual Status InvalidateCache(size_t offset, size_t length) {
return Status::NotSupported("InvalidateCache not supported.");
}
// Sync a file range with disk.
// offset is the starting byte of the file range to be synchronized.
// nbytes specifies the length of the range to be synchronized.
// This asks the OS to initiate flushing the cached data to disk,
// without waiting for completion.
// Default implementation does nothing.
virtual Status RangeSync(uint64_t offset, uint64_t nbytes) { return Status::OK(); }
// PrepareWrite performs any necessary preparation for a write
// before the write actually occurs. This allows for pre-allocation
// of space on devices where it can result in less file
// fragmentation and/or less waste from over-zealous filesystem
// pre-allocation.
virtual void PrepareWrite(size_t offset, size_t len) {
if (preallocation_block_size_ == 0) {
return;
}
// If this write would cross one or more preallocation blocks,
// determine what the last preallocation block necessary to
// cover this write would be and Allocate to that point.
const auto block_size = preallocation_block_size_;
size_t new_last_preallocated_block =
(offset + len + block_size - 1) / block_size;
if (new_last_preallocated_block > last_preallocated_block_) {
size_t num_spanned_blocks =
new_last_preallocated_block - last_preallocated_block_;
Allocate(block_size * last_preallocated_block_,
block_size * num_spanned_blocks);
last_preallocated_block_ = new_last_preallocated_block;
}
}
// Pre-allocates space for a file.
virtual Status Allocate(uint64_t offset, uint64_t len) {
return Status::OK();
}
protected:
size_t preallocation_block_size() { return preallocation_block_size_; }
private:
size_t last_preallocated_block_;
size_t preallocation_block_size_;
// No copying allowed
WritableFile(const WritableFile&);
void operator=(const WritableFile&);
protected:
friend class WritableFileWrapper;
friend class WritableFileMirror;
Env::IOPriority io_priority_;
};
// A file abstraction for random reading and writing.
class RandomRWFile {
public:
RandomRWFile() {}
virtual ~RandomRWFile() {}
// Indicates if the class makes use of direct I/O
// If false you must pass aligned buffer to Write()
virtual bool use_direct_io() const { return false; }
// Use the returned alignment value to allocate
// aligned buffer for Direct I/O
virtual size_t GetRequiredBufferAlignment() const { return kDefaultPageSize; }
// Write bytes in `data` at offset `offset`, Returns Status::OK() on success.
// Pass aligned buffer when use_direct_io() returns true.
virtual Status Write(uint64_t offset, const Slice& data) = 0;
// Read up to `n` bytes starting from offset `offset` and store them in
// result, provided `scratch` size should be at least `n`.
// Returns Status::OK() on success.
virtual Status Read(uint64_t offset, size_t n, Slice* result,
char* scratch) const = 0;
virtual Status Flush() = 0;
virtual Status Sync() = 0;
virtual Status Fsync() { return Sync(); }
virtual Status Close() = 0;
// No copying allowed
RandomRWFile(const RandomRWFile&) = delete;
RandomRWFile& operator=(const RandomRWFile&) = delete;
};
// Directory object represents collection of files and implements
// filesystem operations that can be executed on directories.
class Directory {
public:
virtual ~Directory() {}
// Fsync directory. Can be called concurrently from multiple threads.
virtual Status Fsync() = 0;
};
enum InfoLogLevel : unsigned char {
DEBUG_LEVEL = 0,
INFO_LEVEL,
WARN_LEVEL,
ERROR_LEVEL,
FATAL_LEVEL,
HEADER_LEVEL,
NUM_INFO_LOG_LEVELS,
};
// An interface for writing log messages.
class Logger {
public:
size_t kDoNotSupportGetLogFileSize = (std::numeric_limits<size_t>::max)();
explicit Logger(const InfoLogLevel log_level = InfoLogLevel::INFO_LEVEL)
: log_level_(log_level) {}
virtual ~Logger();
// Write a header to the log file with the specified format
// It is recommended that you log all header information at the start of the
// application. But it is not enforced.
virtual void LogHeader(const char* format, va_list ap) {
// Default implementation does a simple INFO level log write.
// Please override as per the logger class requirement.
Logv(format, ap);
}
// Write an entry to the log file with the specified format.
virtual void Logv(const char* format, va_list ap) = 0;
// Write an entry to the log file with the specified log level
// and format. Any log with level under the internal log level
// of *this (see @SetInfoLogLevel and @GetInfoLogLevel) will not be
// printed.
virtual void Logv(const InfoLogLevel log_level, const char* format, va_list ap);
virtual size_t GetLogFileSize() const { return kDoNotSupportGetLogFileSize; }
// Flush to the OS buffers
virtual void Flush() {}
virtual InfoLogLevel GetInfoLogLevel() const { return log_level_; }
virtual void SetInfoLogLevel(const InfoLogLevel log_level) {
log_level_ = log_level;
}
private:
// No copying allowed
Logger(const Logger&);
void operator=(const Logger&);
InfoLogLevel log_level_;
};
// Identifies a locked file.
class FileLock {
public:
FileLock() { }
virtual ~FileLock();
private:
// No copying allowed
FileLock(const FileLock&);
void operator=(const FileLock&);
};
extern void LogFlush(const shared_ptr<Logger>& info_log);
extern void Log(const InfoLogLevel log_level,
const shared_ptr<Logger>& info_log, const char* format, ...);
// a set of log functions with different log levels.
extern void Header(const shared_ptr<Logger>& info_log, const char* format, ...);
extern void Debug(const shared_ptr<Logger>& info_log, const char* format, ...);
extern void Info(const shared_ptr<Logger>& info_log, const char* format, ...);
extern void Warn(const shared_ptr<Logger>& info_log, const char* format, ...);
extern void Error(const shared_ptr<Logger>& info_log, const char* format, ...);
extern void Fatal(const shared_ptr<Logger>& info_log, const char* format, ...);
// Log the specified data to *info_log if info_log is non-nullptr.
// The default info log level is InfoLogLevel::INFO_LEVEL.
extern void Log(const shared_ptr<Logger>& info_log, const char* format, ...)
# if defined(__GNUC__) || defined(__clang__)
__attribute__((__format__ (__printf__, 2, 3)))
# endif
;
extern void LogFlush(Logger *info_log);
extern void Log(const InfoLogLevel log_level, Logger* info_log,
const char* format, ...);
// The default info log level is InfoLogLevel::INFO_LEVEL.
extern void Log(Logger* info_log, const char* format, ...)
# if defined(__GNUC__) || defined(__clang__)
__attribute__((__format__ (__printf__, 2, 3)))
# endif
;
// a set of log functions with different log levels.
extern void Header(Logger* info_log, const char* format, ...);
extern void Debug(Logger* info_log, const char* format, ...);
extern void Info(Logger* info_log, const char* format, ...);
extern void Warn(Logger* info_log, const char* format, ...);
extern void Error(Logger* info_log, const char* format, ...);
extern void Fatal(Logger* info_log, const char* format, ...);
// A utility routine: write "data" to the named file.
extern Status WriteStringToFile(Env* env, const Slice& data,
const std::string& fname,
bool should_sync = false);
// A utility routine: read contents of named file into *data
extern Status ReadFileToString(Env* env, const std::string& fname,
std::string* data);
// An implementation of Env that forwards all calls to another Env.
// May be useful to clients who wish to override just part of the
// functionality of another Env.
class EnvWrapper : public Env {
public:
// Initialize an EnvWrapper that delegates all calls to *t
explicit EnvWrapper(Env* t) : target_(t) { }
~EnvWrapper() override;
// Return the target to which this Env forwards all calls
Env* target() const { return target_; }
// The following text is boilerplate that forwards all methods to target()
Status NewSequentialFile(const std::string& f, unique_ptr<SequentialFile>* r,
const EnvOptions& options) override {
return target_->NewSequentialFile(f, r, options);
}
Status NewRandomAccessFile(const std::string& f,
unique_ptr<RandomAccessFile>* r,
const EnvOptions& options) override {
return target_->NewRandomAccessFile(f, r, options);
}
Status NewWritableFile(const std::string& f, unique_ptr<WritableFile>* r,
const EnvOptions& options) override {
return target_->NewWritableFile(f, r, options);
}
Status ReopenWritableFile(const std::string& fname,
unique_ptr<WritableFile>* result,
const EnvOptions& options) override {
return target_->ReopenWritableFile(fname, result, options);
}
Status ReuseWritableFile(const std::string& fname,
const std::string& old_fname,
unique_ptr<WritableFile>* r,
const EnvOptions& options) override {
return target_->ReuseWritableFile(fname, old_fname, r, options);
}
Status NewRandomRWFile(const std::string& fname,
unique_ptr<RandomRWFile>* result,
const EnvOptions& options) override {
return target_->NewRandomRWFile(fname, result, options);
}
Status NewDirectory(const std::string& name,
unique_ptr<Directory>* result) override {
return target_->NewDirectory(name, result);
}
Status FileExists(const std::string& f) override {
return target_->FileExists(f);
}
Status GetChildren(const std::string& dir,
std::vector<std::string>* r) override {
return target_->GetChildren(dir, r);
}
Status GetChildrenFileAttributes(
const std::string& dir, std::vector<FileAttributes>* result) override {
return target_->GetChildrenFileAttributes(dir, result);
}
Status DeleteFile(const std::string& f) override {
return target_->DeleteFile(f);
}
Status CreateDir(const std::string& d) override {
return target_->CreateDir(d);
}
Status CreateDirIfMissing(const std::string& d) override {
return target_->CreateDirIfMissing(d);
}
Status DeleteDir(const std::string& d) override {
return target_->DeleteDir(d);
}
Status GetFileSize(const std::string& f, uint64_t* s) override {
return target_->GetFileSize(f, s);
}
Status GetFileModificationTime(const std::string& fname,
uint64_t* file_mtime) override {
return target_->GetFileModificationTime(fname, file_mtime);
}
Status RenameFile(const std::string& s, const std::string& t) override {
return target_->RenameFile(s, t);
}
Status LinkFile(const std::string& s, const std::string& t) override {
return target_->LinkFile(s, t);
}
Status LockFile(const std::string& f, FileLock** l) override {
return target_->LockFile(f, l);
}
Status UnlockFile(FileLock* l) override { return target_->UnlockFile(l); }
void Schedule(void (*f)(void* arg), void* a, Priority pri,
void* tag = nullptr, void (*u)(void* arg) = 0) override {
return target_->Schedule(f, a, pri, tag, u);
}
int UnSchedule(void* tag, Priority pri) override {
return target_->UnSchedule(tag, pri);
}
void StartThread(void (*f)(void*), void* a) override {
return target_->StartThread(f, a);
}
void WaitForJoin() override { return target_->WaitForJoin(); }
unsigned int GetThreadPoolQueueLen(Priority pri = LOW) const override {
return target_->GetThreadPoolQueueLen(pri);
}
Status GetTestDirectory(std::string* path) override {
return target_->GetTestDirectory(path);
}
Status NewLogger(const std::string& fname,
shared_ptr<Logger>* result) override {
return target_->NewLogger(fname, result);
}
uint64_t NowMicros() override { return target_->NowMicros(); }
void SleepForMicroseconds(int micros) override {
target_->SleepForMicroseconds(micros);
}
Status GetHostName(char* name, uint64_t len) override {
return target_->GetHostName(name, len);
}
Status GetCurrentTime(int64_t* unix_time) override {
return target_->GetCurrentTime(unix_time);
}
Status GetAbsolutePath(const std::string& db_path,
std::string* output_path) override {
return target_->GetAbsolutePath(db_path, output_path);
}
void SetBackgroundThreads(int num, Priority pri) override {
return target_->SetBackgroundThreads(num, pri);
}
int GetBackgroundThreads(Priority pri) override {
return target_->GetBackgroundThreads(pri);
}
void IncBackgroundThreadsIfNeeded(int num, Priority pri) override {
return target_->IncBackgroundThreadsIfNeeded(num, pri);
}
void LowerThreadPoolIOPriority(Priority pool = LOW) override {
target_->LowerThreadPoolIOPriority(pool);
}
std::string TimeToString(uint64_t time) override {
return target_->TimeToString(time);
}
Status GetThreadList(std::vector<ThreadStatus>* thread_list) override {
return target_->GetThreadList(thread_list);
}
ThreadStatusUpdater* GetThreadStatusUpdater() const override {
return target_->GetThreadStatusUpdater();
}
uint64_t GetThreadID() const override {
return target_->GetThreadID();
}
std::string GenerateUniqueId() override {
return target_->GenerateUniqueId();
}
private:
Env* target_;
};
// An implementation of WritableFile that forwards all calls to another
// WritableFile. May be useful to clients who wish to override just part of the
// functionality of another WritableFile.
// It's declared as friend of WritableFile to allow forwarding calls to
// protected virtual methods.
class WritableFileWrapper : public WritableFile {
public:
explicit WritableFileWrapper(WritableFile* t) : target_(t) { }
Status Append(const Slice& data) override { return target_->Append(data); }
Status PositionedAppend(const Slice& data, uint64_t offset) override {
return target_->PositionedAppend(data, offset);
}
Status Truncate(uint64_t size) override { return target_->Truncate(size); }
Status Close() override { return target_->Close(); }
Status Flush() override { return target_->Flush(); }
Status Sync() override { return target_->Sync(); }
Status Fsync() override { return target_->Fsync(); }
bool IsSyncThreadSafe() const override { return target_->IsSyncThreadSafe(); }
void SetIOPriority(Env::IOPriority pri) override {
target_->SetIOPriority(pri);
}
Env::IOPriority GetIOPriority() override { return target_->GetIOPriority(); }
uint64_t GetFileSize() override { return target_->GetFileSize(); }
void GetPreallocationStatus(size_t* block_size,
size_t* last_allocated_block) override {
target_->GetPreallocationStatus(block_size, last_allocated_block);
}
size_t GetUniqueId(char* id, size_t max_size) const override {
return target_->GetUniqueId(id, max_size);
}
Status InvalidateCache(size_t offset, size_t length) override {
return target_->InvalidateCache(offset, length);
}
void SetPreallocationBlockSize(size_t size) override {
target_->SetPreallocationBlockSize(size);
}
void PrepareWrite(size_t offset, size_t len) override {
target_->PrepareWrite(offset, len);
}
protected:
Status Allocate(uint64_t offset, uint64_t len) override {
return target_->Allocate(offset, len);
}
Status RangeSync(uint64_t offset, uint64_t nbytes) override {
return target_->RangeSync(offset, nbytes);
}
private:
WritableFile* target_;
};
// Returns a new environment that stores its data in memory and delegates
// all non-file-storage tasks to base_env. The caller must delete the result
// when it is no longer needed.
// *base_env must remain live while the result is in use.
Env* NewMemEnv(Env* base_env);
// Returns a new environment that is used for HDFS environment.
// This is a factory method for HdfsEnv declared in hdfs/env_hdfs.h
Status NewHdfsEnv(Env** hdfs_env, const std::string& fsname);
// Returns a new environment that measures function call times for filesystem
// operations, reporting results to variables in PerfContext.
// This is a factory method for TimedEnv defined in utilities/env_timed.cc.
Env* NewTimedEnv(Env* base_env);
} // namespace rocksdb
#endif // STORAGE_ROCKSDB_INCLUDE_ENV_H_