blob: b72f3208129dd1f24f4aa98fc46ca239085bd1b6 [file] [log] [blame]
/**
* Copyright (c) 2015 - 2018, Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef NRF_SAADC_H_
#define NRF_SAADC_H_
#include <nrfx.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup nrf_saadc_hal SAADC HAL
* @{
* @ingroup nrf_saadc
* @brief Hardware access layer for managing the SAADC peripheral.
*/
#define NRF_SAADC_CHANNEL_COUNT 8
/**
* @brief Resolution of the analog-to-digital converter.
*/
typedef enum
{
NRF_SAADC_RESOLUTION_8BIT = SAADC_RESOLUTION_VAL_8bit, ///< 8 bit resolution.
NRF_SAADC_RESOLUTION_10BIT = SAADC_RESOLUTION_VAL_10bit, ///< 10 bit resolution.
NRF_SAADC_RESOLUTION_12BIT = SAADC_RESOLUTION_VAL_12bit, ///< 12 bit resolution.
NRF_SAADC_RESOLUTION_14BIT = SAADC_RESOLUTION_VAL_14bit ///< 14 bit resolution.
} nrf_saadc_resolution_t;
/**
* @brief Input selection for the analog-to-digital converter.
*/
typedef enum
{
NRF_SAADC_INPUT_DISABLED = SAADC_CH_PSELP_PSELP_NC, ///< Not connected.
NRF_SAADC_INPUT_AIN0 = SAADC_CH_PSELP_PSELP_AnalogInput0, ///< Analog input 0 (AIN0).
NRF_SAADC_INPUT_AIN1 = SAADC_CH_PSELP_PSELP_AnalogInput1, ///< Analog input 1 (AIN1).
NRF_SAADC_INPUT_AIN2 = SAADC_CH_PSELP_PSELP_AnalogInput2, ///< Analog input 2 (AIN2).
NRF_SAADC_INPUT_AIN3 = SAADC_CH_PSELP_PSELP_AnalogInput3, ///< Analog input 3 (AIN3).
NRF_SAADC_INPUT_AIN4 = SAADC_CH_PSELP_PSELP_AnalogInput4, ///< Analog input 4 (AIN4).
NRF_SAADC_INPUT_AIN5 = SAADC_CH_PSELP_PSELP_AnalogInput5, ///< Analog input 5 (AIN5).
NRF_SAADC_INPUT_AIN6 = SAADC_CH_PSELP_PSELP_AnalogInput6, ///< Analog input 6 (AIN6).
NRF_SAADC_INPUT_AIN7 = SAADC_CH_PSELP_PSELP_AnalogInput7, ///< Analog input 7 (AIN7).
NRF_SAADC_INPUT_VDD = SAADC_CH_PSELP_PSELP_VDD ///< VDD as input.
} nrf_saadc_input_t;
/**
* @brief Analog-to-digital converter oversampling mode.
*/
typedef enum
{
NRF_SAADC_OVERSAMPLE_DISABLED = SAADC_OVERSAMPLE_OVERSAMPLE_Bypass, ///< No oversampling.
NRF_SAADC_OVERSAMPLE_2X = SAADC_OVERSAMPLE_OVERSAMPLE_Over2x, ///< Oversample 2x.
NRF_SAADC_OVERSAMPLE_4X = SAADC_OVERSAMPLE_OVERSAMPLE_Over4x, ///< Oversample 4x.
NRF_SAADC_OVERSAMPLE_8X = SAADC_OVERSAMPLE_OVERSAMPLE_Over8x, ///< Oversample 8x.
NRF_SAADC_OVERSAMPLE_16X = SAADC_OVERSAMPLE_OVERSAMPLE_Over16x, ///< Oversample 16x.
NRF_SAADC_OVERSAMPLE_32X = SAADC_OVERSAMPLE_OVERSAMPLE_Over32x, ///< Oversample 32x.
NRF_SAADC_OVERSAMPLE_64X = SAADC_OVERSAMPLE_OVERSAMPLE_Over64x, ///< Oversample 64x.
NRF_SAADC_OVERSAMPLE_128X = SAADC_OVERSAMPLE_OVERSAMPLE_Over128x, ///< Oversample 128x.
NRF_SAADC_OVERSAMPLE_256X = SAADC_OVERSAMPLE_OVERSAMPLE_Over256x ///< Oversample 256x.
} nrf_saadc_oversample_t;
/**
* @brief Analog-to-digital converter channel resistor control.
*/
typedef enum
{
NRF_SAADC_RESISTOR_DISABLED = SAADC_CH_CONFIG_RESP_Bypass, ///< Bypass resistor ladder.
NRF_SAADC_RESISTOR_PULLDOWN = SAADC_CH_CONFIG_RESP_Pulldown, ///< Pull-down to GND.
NRF_SAADC_RESISTOR_PULLUP = SAADC_CH_CONFIG_RESP_Pullup, ///< Pull-up to VDD.
NRF_SAADC_RESISTOR_VDD1_2 = SAADC_CH_CONFIG_RESP_VDD1_2 ///< Set input at VDD/2.
} nrf_saadc_resistor_t;
/**
* @brief Gain factor of the analog-to-digital converter input.
*/
typedef enum
{
NRF_SAADC_GAIN1_6 = SAADC_CH_CONFIG_GAIN_Gain1_6, ///< Gain factor 1/6.
NRF_SAADC_GAIN1_5 = SAADC_CH_CONFIG_GAIN_Gain1_5, ///< Gain factor 1/5.
NRF_SAADC_GAIN1_4 = SAADC_CH_CONFIG_GAIN_Gain1_4, ///< Gain factor 1/4.
NRF_SAADC_GAIN1_3 = SAADC_CH_CONFIG_GAIN_Gain1_3, ///< Gain factor 1/3.
NRF_SAADC_GAIN1_2 = SAADC_CH_CONFIG_GAIN_Gain1_2, ///< Gain factor 1/2.
NRF_SAADC_GAIN1 = SAADC_CH_CONFIG_GAIN_Gain1, ///< Gain factor 1.
NRF_SAADC_GAIN2 = SAADC_CH_CONFIG_GAIN_Gain2, ///< Gain factor 2.
NRF_SAADC_GAIN4 = SAADC_CH_CONFIG_GAIN_Gain4, ///< Gain factor 4.
} nrf_saadc_gain_t;
/**
* @brief Reference selection for the analog-to-digital converter.
*/
typedef enum
{
NRF_SAADC_REFERENCE_INTERNAL = SAADC_CH_CONFIG_REFSEL_Internal, ///< Internal reference (0.6 V).
NRF_SAADC_REFERENCE_VDD4 = SAADC_CH_CONFIG_REFSEL_VDD1_4 ///< VDD/4 as reference.
} nrf_saadc_reference_t;
/**
* @brief Analog-to-digital converter acquisition time.
*/
typedef enum
{
NRF_SAADC_ACQTIME_3US = SAADC_CH_CONFIG_TACQ_3us, ///< 3 us.
NRF_SAADC_ACQTIME_5US = SAADC_CH_CONFIG_TACQ_5us, ///< 5 us.
NRF_SAADC_ACQTIME_10US = SAADC_CH_CONFIG_TACQ_10us, ///< 10 us.
NRF_SAADC_ACQTIME_15US = SAADC_CH_CONFIG_TACQ_15us, ///< 15 us.
NRF_SAADC_ACQTIME_20US = SAADC_CH_CONFIG_TACQ_20us, ///< 20 us.
NRF_SAADC_ACQTIME_40US = SAADC_CH_CONFIG_TACQ_40us ///< 40 us.
} nrf_saadc_acqtime_t;
/**
* @brief Analog-to-digital converter channel mode.
*/
typedef enum
{
NRF_SAADC_MODE_SINGLE_ENDED = SAADC_CH_CONFIG_MODE_SE, ///< Single ended, PSELN will be ignored, negative input to ADC shorted to GND.
NRF_SAADC_MODE_DIFFERENTIAL = SAADC_CH_CONFIG_MODE_Diff ///< Differential mode.
} nrf_saadc_mode_t;
/**
* @brief Analog-to-digital converter channel burst mode.
*/
typedef enum
{
NRF_SAADC_BURST_DISABLED = SAADC_CH_CONFIG_BURST_Disabled, ///< Burst mode is disabled (normal operation).
NRF_SAADC_BURST_ENABLED = SAADC_CH_CONFIG_BURST_Enabled ///< Burst mode is enabled. SAADC takes 2^OVERSAMPLE number of samples as fast as it can, and sends the average to Data RAM.
} nrf_saadc_burst_t;
/**
* @brief Analog-to-digital converter tasks.
*/
typedef enum /*lint -save -e30 -esym(628,__INTADDR__) */
{
NRF_SAADC_TASK_START = offsetof(NRF_SAADC_Type, TASKS_START), ///< Start the ADC and prepare the result buffer in RAM.
NRF_SAADC_TASK_SAMPLE = offsetof(NRF_SAADC_Type, TASKS_SAMPLE), ///< Take one ADC sample. If scan is enabled, all channels are sampled.
NRF_SAADC_TASK_STOP = offsetof(NRF_SAADC_Type, TASKS_STOP), ///< Stop the ADC and terminate any on-going conversion.
NRF_SAADC_TASK_CALIBRATEOFFSET = offsetof(NRF_SAADC_Type, TASKS_CALIBRATEOFFSET), ///< Starts offset auto-calibration.
} nrf_saadc_task_t;
/**
* @brief Analog-to-digital converter events.
*/
typedef enum /*lint -save -e30 -esym(628,__INTADDR__) */
{
NRF_SAADC_EVENT_STARTED = offsetof(NRF_SAADC_Type, EVENTS_STARTED), ///< The ADC has started.
NRF_SAADC_EVENT_END = offsetof(NRF_SAADC_Type, EVENTS_END), ///< The ADC has filled up the result buffer.
NRF_SAADC_EVENT_DONE = offsetof(NRF_SAADC_Type, EVENTS_DONE), ///< A conversion task has been completed.
NRF_SAADC_EVENT_RESULTDONE = offsetof(NRF_SAADC_Type, EVENTS_RESULTDONE), ///< A result is ready to get transferred to RAM.
NRF_SAADC_EVENT_CALIBRATEDONE = offsetof(NRF_SAADC_Type, EVENTS_CALIBRATEDONE), ///< Calibration is complete.
NRF_SAADC_EVENT_STOPPED = offsetof(NRF_SAADC_Type, EVENTS_STOPPED), ///< The ADC has stopped.
NRF_SAADC_EVENT_CH0_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[0].LIMITH), ///< Last result is equal or above CH[0].LIMIT.HIGH.
NRF_SAADC_EVENT_CH0_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[0].LIMITL), ///< Last result is equal or below CH[0].LIMIT.LOW.
NRF_SAADC_EVENT_CH1_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[1].LIMITH), ///< Last result is equal or above CH[1].LIMIT.HIGH.
NRF_SAADC_EVENT_CH1_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[1].LIMITL), ///< Last result is equal or below CH[1].LIMIT.LOW.
NRF_SAADC_EVENT_CH2_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[2].LIMITH), ///< Last result is equal or above CH[2].LIMIT.HIGH.
NRF_SAADC_EVENT_CH2_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[2].LIMITL), ///< Last result is equal or below CH[2].LIMIT.LOW.
NRF_SAADC_EVENT_CH3_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[3].LIMITH), ///< Last result is equal or above CH[3].LIMIT.HIGH.
NRF_SAADC_EVENT_CH3_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[3].LIMITL), ///< Last result is equal or below CH[3].LIMIT.LOW.
NRF_SAADC_EVENT_CH4_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[4].LIMITH), ///< Last result is equal or above CH[4].LIMIT.HIGH.
NRF_SAADC_EVENT_CH4_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[4].LIMITL), ///< Last result is equal or below CH[4].LIMIT.LOW.
NRF_SAADC_EVENT_CH5_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[5].LIMITH), ///< Last result is equal or above CH[5].LIMIT.HIGH.
NRF_SAADC_EVENT_CH5_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[5].LIMITL), ///< Last result is equal or below CH[5].LIMIT.LOW.
NRF_SAADC_EVENT_CH6_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[6].LIMITH), ///< Last result is equal or above CH[6].LIMIT.HIGH.
NRF_SAADC_EVENT_CH6_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[6].LIMITL), ///< Last result is equal or below CH[6].LIMIT.LOW.
NRF_SAADC_EVENT_CH7_LIMITH = offsetof(NRF_SAADC_Type, EVENTS_CH[7].LIMITH), ///< Last result is equal or above CH[7].LIMIT.HIGH.
NRF_SAADC_EVENT_CH7_LIMITL = offsetof(NRF_SAADC_Type, EVENTS_CH[7].LIMITL) ///< Last result is equal or below CH[7].LIMIT.LOW.
} nrf_saadc_event_t;
/**
* @brief Analog-to-digital converter interrupt masks.
*/
typedef enum
{
NRF_SAADC_INT_STARTED = SAADC_INTENSET_STARTED_Msk, ///< Interrupt on EVENTS_STARTED event.
NRF_SAADC_INT_END = SAADC_INTENSET_END_Msk, ///< Interrupt on EVENTS_END event.
NRF_SAADC_INT_DONE = SAADC_INTENSET_DONE_Msk, ///< Interrupt on EVENTS_DONE event.
NRF_SAADC_INT_RESULTDONE = SAADC_INTENSET_RESULTDONE_Msk, ///< Interrupt on EVENTS_RESULTDONE event.
NRF_SAADC_INT_CALIBRATEDONE = SAADC_INTENSET_CALIBRATEDONE_Msk, ///< Interrupt on EVENTS_CALIBRATEDONE event.
NRF_SAADC_INT_STOPPED = SAADC_INTENSET_STOPPED_Msk, ///< Interrupt on EVENTS_STOPPED event.
NRF_SAADC_INT_CH0LIMITH = SAADC_INTENSET_CH0LIMITH_Msk, ///< Interrupt on EVENTS_CH[0].LIMITH event.
NRF_SAADC_INT_CH0LIMITL = SAADC_INTENSET_CH0LIMITL_Msk, ///< Interrupt on EVENTS_CH[0].LIMITL event.
NRF_SAADC_INT_CH1LIMITH = SAADC_INTENSET_CH1LIMITH_Msk, ///< Interrupt on EVENTS_CH[1].LIMITH event.
NRF_SAADC_INT_CH1LIMITL = SAADC_INTENSET_CH1LIMITL_Msk, ///< Interrupt on EVENTS_CH[1].LIMITL event.
NRF_SAADC_INT_CH2LIMITH = SAADC_INTENSET_CH2LIMITH_Msk, ///< Interrupt on EVENTS_CH[2].LIMITH event.
NRF_SAADC_INT_CH2LIMITL = SAADC_INTENSET_CH2LIMITL_Msk, ///< Interrupt on EVENTS_CH[2].LIMITL event.
NRF_SAADC_INT_CH3LIMITH = SAADC_INTENSET_CH3LIMITH_Msk, ///< Interrupt on EVENTS_CH[3].LIMITH event.
NRF_SAADC_INT_CH3LIMITL = SAADC_INTENSET_CH3LIMITL_Msk, ///< Interrupt on EVENTS_CH[3].LIMITL event.
NRF_SAADC_INT_CH4LIMITH = SAADC_INTENSET_CH4LIMITH_Msk, ///< Interrupt on EVENTS_CH[4].LIMITH event.
NRF_SAADC_INT_CH4LIMITL = SAADC_INTENSET_CH4LIMITL_Msk, ///< Interrupt on EVENTS_CH[4].LIMITL event.
NRF_SAADC_INT_CH5LIMITH = SAADC_INTENSET_CH5LIMITH_Msk, ///< Interrupt on EVENTS_CH[5].LIMITH event.
NRF_SAADC_INT_CH5LIMITL = SAADC_INTENSET_CH5LIMITL_Msk, ///< Interrupt on EVENTS_CH[5].LIMITL event.
NRF_SAADC_INT_CH6LIMITH = SAADC_INTENSET_CH6LIMITH_Msk, ///< Interrupt on EVENTS_CH[6].LIMITH event.
NRF_SAADC_INT_CH6LIMITL = SAADC_INTENSET_CH6LIMITL_Msk, ///< Interrupt on EVENTS_CH[6].LIMITL event.
NRF_SAADC_INT_CH7LIMITH = SAADC_INTENSET_CH7LIMITH_Msk, ///< Interrupt on EVENTS_CH[7].LIMITH event.
NRF_SAADC_INT_CH7LIMITL = SAADC_INTENSET_CH7LIMITL_Msk, ///< Interrupt on EVENTS_CH[7].LIMITL event.
NRF_SAADC_INT_ALL = 0x7FFFFFFFUL ///< Mask of all interrupts.
} nrf_saadc_int_mask_t;
/**
* @brief Analog-to-digital converter value limit type.
*/
typedef enum
{
NRF_SAADC_LIMIT_LOW = 0,
NRF_SAADC_LIMIT_HIGH = 1
} nrf_saadc_limit_t;
typedef int16_t nrf_saadc_value_t; ///< Type of a single ADC conversion result.
/**
* @brief Analog-to-digital converter configuration structure.
*/
typedef struct
{
nrf_saadc_resolution_t resolution;
nrf_saadc_oversample_t oversample;
nrf_saadc_value_t * buffer;
uint32_t buffer_size;
} nrf_saadc_config_t;
/**
* @brief Analog-to-digital converter channel configuration structure.
*/
typedef struct
{
nrf_saadc_resistor_t resistor_p;
nrf_saadc_resistor_t resistor_n;
nrf_saadc_gain_t gain;
nrf_saadc_reference_t reference;
nrf_saadc_acqtime_t acq_time;
nrf_saadc_mode_t mode;
nrf_saadc_burst_t burst;
nrf_saadc_input_t pin_p;
nrf_saadc_input_t pin_n;
} nrf_saadc_channel_config_t;
/**
* @brief Function for triggering a specific SAADC task.
*
* @param[in] saadc_task SAADC task.
*/
__STATIC_INLINE void nrf_saadc_task_trigger(nrf_saadc_task_t saadc_task)
{
*((volatile uint32_t *)((uint8_t *)NRF_SAADC + (uint32_t)saadc_task)) = 0x1UL;
}
/**
* @brief Function for getting the address of a specific SAADC task register.
*
* @param[in] saadc_task SAADC task.
*
* @return Address of the specified SAADC task.
*/
__STATIC_INLINE uint32_t nrf_saadc_task_address_get(nrf_saadc_task_t saadc_task)
{
return (uint32_t)((uint8_t *)NRF_SAADC + (uint32_t)saadc_task);
}
/**
* @brief Function for getting the state of a specific SAADC event.
*
* @param[in] saadc_event SAADC event.
*
* @return State of the specified SAADC event.
*/
__STATIC_INLINE bool nrf_saadc_event_check(nrf_saadc_event_t saadc_event)
{
return (bool)*(volatile uint32_t *)((uint8_t *)NRF_SAADC + (uint32_t)saadc_event);
}
/**
* @brief Function for clearing the specific SAADC event.
*
* @param[in] saadc_event SAADC event.
*/
__STATIC_INLINE void nrf_saadc_event_clear(nrf_saadc_event_t saadc_event)
{
*((volatile uint32_t *)((uint8_t *)NRF_SAADC + (uint32_t)saadc_event)) = 0x0UL;
#if __CORTEX_M == 0x04
volatile uint32_t dummy = *((volatile uint32_t *)((uint8_t *)NRF_SAADC + (uint32_t)saadc_event));
(void)dummy;
#endif
}
/**
* @brief Function for getting the address of a specific SAADC event register.
*
* @param[in] saadc_event SAADC event.
*
* @return Address of the specified SAADC event.
*/
__STATIC_INLINE uint32_t nrf_saadc_event_address_get(nrf_saadc_event_t saadc_event)
{
return (uint32_t )((uint8_t *)NRF_SAADC + (uint32_t)saadc_event);
}
/**
* @brief Function for getting the address of a specific SAADC limit event register.
*
* @param[in] channel Channel number.
* @param[in] limit_type Low limit or high limit.
*
* @return Address of the specified SAADC limit event.
*/
__STATIC_INLINE volatile uint32_t * nrf_saadc_event_limit_address_get(uint8_t channel, nrf_saadc_limit_t limit_type)
{
NRFX_ASSERT(channel < NRF_SAADC_CHANNEL_COUNT);
if (limit_type == NRF_SAADC_LIMIT_HIGH)
{
return &NRF_SAADC->EVENTS_CH[channel].LIMITH;
}
else
{
return &NRF_SAADC->EVENTS_CH[channel].LIMITL;
}
}
/**
* @brief Function for getting the SAADC channel monitoring limit events.
*
* @param[in] channel Channel number.
* @param[in] limit_type Low limit or high limit.
*/
__STATIC_INLINE nrf_saadc_event_t nrf_saadc_event_limit_get(uint8_t channel, nrf_saadc_limit_t limit_type)
{
if (limit_type == NRF_SAADC_LIMIT_HIGH)
{
return (nrf_saadc_event_t)( (uint32_t) NRF_SAADC_EVENT_CH0_LIMITH +
(uint32_t) (NRF_SAADC_EVENT_CH1_LIMITH - NRF_SAADC_EVENT_CH0_LIMITH)
* (uint32_t) channel );
}
else
{
return (nrf_saadc_event_t)( (uint32_t) NRF_SAADC_EVENT_CH0_LIMITL +
(uint32_t) (NRF_SAADC_EVENT_CH1_LIMITL - NRF_SAADC_EVENT_CH0_LIMITL)
* (uint32_t) channel );
}
}
/**
* @brief Function for configuring the input pins for a specific SAADC channel.
*
* @param[in] channel Channel number.
* @param[in] pselp Positive input.
* @param[in] pseln Negative input. Set to NRF_SAADC_INPUT_DISABLED in single ended mode.
*/
__STATIC_INLINE void nrf_saadc_channel_input_set(uint8_t channel,
nrf_saadc_input_t pselp,
nrf_saadc_input_t pseln)
{
NRF_SAADC->CH[channel].PSELN = pseln;
NRF_SAADC->CH[channel].PSELP = pselp;
}
/**
* @brief Function for setting the SAADC channel monitoring limits.
*
* @param[in] channel Channel number.
* @param[in] low Low limit.
* @param[in] high High limit.
*/
__STATIC_INLINE void nrf_saadc_channel_limits_set(uint8_t channel, int16_t low, int16_t high)
{
NRF_SAADC->CH[channel].LIMIT = (
(((uint32_t) low << SAADC_CH_LIMIT_LOW_Pos) & SAADC_CH_LIMIT_LOW_Msk)
| (((uint32_t) high << SAADC_CH_LIMIT_HIGH_Pos) & SAADC_CH_LIMIT_HIGH_Msk));
}
/**
* @brief Function for enabling specified SAADC interrupts.
*
* @param[in] saadc_int_mask Interrupt(s) to enable.
*/
__STATIC_INLINE void nrf_saadc_int_enable(uint32_t saadc_int_mask)
{
NRF_SAADC->INTENSET = saadc_int_mask;
}
/**
* @brief Function for retrieving the state of specified SAADC interrupts.
*
* @param[in] saadc_int_mask Interrupt(s) to check.
*
* @retval true If all specified interrupts are enabled.
* @retval false If at least one of the given interrupts is not enabled.
*/
__STATIC_INLINE bool nrf_saadc_int_enable_check(uint32_t saadc_int_mask)
{
return (bool)(NRF_SAADC->INTENSET & saadc_int_mask);
}
/**
* @brief Function for disabling specified interrupts.
*
* @param saadc_int_mask Interrupt(s) to disable.
*/
__STATIC_INLINE void nrf_saadc_int_disable(uint32_t saadc_int_mask)
{
NRF_SAADC->INTENCLR = saadc_int_mask;
}
/**
* @brief Function for generating masks for SAADC channel limit interrupts.
*
* @param[in] channel SAADC channel number.
* @param[in] limit_type Limit type.
*
* @returns Interrupt mask.
*/
__STATIC_INLINE uint32_t nrf_saadc_limit_int_get(uint8_t channel, nrf_saadc_limit_t limit_type)
{
NRFX_ASSERT(channel < NRF_SAADC_CHANNEL_COUNT);
uint32_t mask = (limit_type == NRF_SAADC_LIMIT_LOW) ? NRF_SAADC_INT_CH0LIMITL : NRF_SAADC_INT_CH0LIMITH;
return mask << (channel * 2);
}
/**
* @brief Function for checking whether the SAADC is busy.
*
* This function checks whether the analog-to-digital converter is busy with a conversion.
*
* @retval true If the SAADC is busy.
* @retval false If the SAADC is not busy.
*/
__STATIC_INLINE bool nrf_saadc_busy_check(void)
{
//return ((NRF_SAADC->STATUS & SAADC_STATUS_STATUS_Msk) == SAADC_STATUS_STATUS_Msk);
//simplified for performance
return NRF_SAADC->STATUS;
}
/**
* @brief Function for enabling the SAADC.
*
* The analog-to-digital converter must be enabled before use.
*/
__STATIC_INLINE void nrf_saadc_enable(void)
{
NRF_SAADC->ENABLE = (SAADC_ENABLE_ENABLE_Enabled << SAADC_ENABLE_ENABLE_Pos);
}
/**
* @brief Function for disabling the SAADC.
*/
__STATIC_INLINE void nrf_saadc_disable(void)
{
NRF_SAADC->ENABLE = (SAADC_ENABLE_ENABLE_Disabled << SAADC_ENABLE_ENABLE_Pos);
}
/**
* @brief Function for checking if the SAADC is enabled.
*
* @retval true If the SAADC is enabled.
* @retval false If the SAADC is not enabled.
*/
__STATIC_INLINE bool nrf_saadc_enable_check(void)
{
//simplified for performance
return NRF_SAADC->ENABLE;
}
/**
* @brief Function for initializing the SAADC result buffer.
*
* @param[in] buffer Pointer to the result buffer.
* @param[in] num Size of buffer in words.
*/
__STATIC_INLINE void nrf_saadc_buffer_init(nrf_saadc_value_t * buffer, uint32_t num)
{
NRF_SAADC->RESULT.PTR = (uint32_t)buffer;
NRF_SAADC->RESULT.MAXCNT = num;
}
/**
* @brief Function for getting the number of buffer words transferred since last START operation.
*
* @returns Number of words transferred.
*/
__STATIC_INLINE uint16_t nrf_saadc_amount_get(void)
{
return NRF_SAADC->RESULT.AMOUNT;
}
/**
* @brief Function for setting the SAADC sample resolution.
*
* @param[in] resolution Bit resolution.
*/
__STATIC_INLINE void nrf_saadc_resolution_set(nrf_saadc_resolution_t resolution)
{
NRF_SAADC->RESOLUTION = resolution;
}
/**
* @brief Function for configuring the oversampling feature.
*
* @param[in] oversample Oversampling mode.
*/
__STATIC_INLINE void nrf_saadc_oversample_set(nrf_saadc_oversample_t oversample)
{
NRF_SAADC->OVERSAMPLE = oversample;
}
/**
* @brief Function for getting the oversampling feature configuration.
*
* @return Oversampling configuration.
*/
__STATIC_INLINE nrf_saadc_oversample_t nrf_saadc_oversample_get(void)
{
return (nrf_saadc_oversample_t)NRF_SAADC->OVERSAMPLE;
}
/**
* @brief Function for initializing the SAADC channel.
*
* @param[in] channel Channel number.
* @param[in] config Pointer to the channel configuration structure.
*/
__STATIC_INLINE void nrf_saadc_channel_init(uint8_t channel,
nrf_saadc_channel_config_t const * const config)
{
NRF_SAADC->CH[channel].CONFIG =
((config->resistor_p << SAADC_CH_CONFIG_RESP_Pos) & SAADC_CH_CONFIG_RESP_Msk)
| ((config->resistor_n << SAADC_CH_CONFIG_RESN_Pos) & SAADC_CH_CONFIG_RESN_Msk)
| ((config->gain << SAADC_CH_CONFIG_GAIN_Pos) & SAADC_CH_CONFIG_GAIN_Msk)
| ((config->reference << SAADC_CH_CONFIG_REFSEL_Pos) & SAADC_CH_CONFIG_REFSEL_Msk)
| ((config->acq_time << SAADC_CH_CONFIG_TACQ_Pos) & SAADC_CH_CONFIG_TACQ_Msk)
| ((config->mode << SAADC_CH_CONFIG_MODE_Pos) & SAADC_CH_CONFIG_MODE_Msk)
| ((config->burst << SAADC_CH_CONFIG_BURST_Pos) & SAADC_CH_CONFIG_BURST_Msk);
nrf_saadc_channel_input_set(channel, config->pin_p, config->pin_n);
}
/** @} */
#ifdef __cplusplus
}
#endif
#endif /* NRF_SAADC_H_ */