blob: 8bda4a912d6f8603dd030cbc2b0469193f352ffa [file] [log] [blame]
/**
* Copyright (c) 2016 - 2018, Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <nrfx.h>
#if NRFX_CHECK(NRFX_CLOCK_ENABLED)
#include <nrfx_clock.h>
#define NRFX_LOG_MODULE CLOCK
#include <nrfx_log.h>
#if NRFX_CHECK(NRFX_POWER_ENABLED)
extern bool nrfx_power_irq_enabled;
#endif
#define EVT_TO_STR(event) \
(event == NRF_CLOCK_EVENT_HFCLKSTARTED ? "NRF_CLOCK_EVENT_HFCLKSTARTED" : \
(event == NRF_CLOCK_EVENT_LFCLKSTARTED ? "NRF_CLOCK_EVENT_LFCLKSTARTED" : \
(event == NRF_CLOCK_EVENT_DONE ? "NRF_CLOCK_EVENT_DONE" : \
(event == NRF_CLOCK_EVENT_CTTO ? "NRF_CLOCK_EVENT_CTTO" : \
"UNKNOWN EVENT"))))
/*lint -save -e652 */
#define NRF_CLOCK_LFCLK_RC CLOCK_LFCLKSRC_SRC_RC
#define NRF_CLOCK_LFCLK_Xtal CLOCK_LFCLKSRC_SRC_Xtal
#define NRF_CLOCK_LFCLK_Synth CLOCK_LFCLKSRC_SRC_Synth
/*lint -restore */
#if (NRFX_CLOCK_CONFIG_LF_SRC == NRF_CLOCK_LFCLK_RC)
#define CALIBRATION_SUPPORT 1
#else
#define CALIBRATION_SUPPORT 0
#endif
#if defined(NRF52810_XXAA) || \
defined(NRF52832_XXAA) || defined(NRF52832_XXAB) || \
defined(NRF52840_XXAA)
// Enable workaround for nRF52 anomaly 192 (LFRC oscillator frequency is wrong
// after calibration, exceeding 500 ppm).
#define USE_WORKAROUND_FOR_ANOMALY_192
// Enable workaround for nRF52 anomaly 201 (EVENTS_HFCLKSTARTED might be generated twice).
#define USE_WORKAROUND_FOR_ANOMALY_201
#endif
typedef enum
{
CAL_STATE_IDLE,
CAL_STATE_CAL
} nrfx_clock_cal_state_t;
/**@brief CLOCK control block. */
typedef struct
{
nrfx_clock_event_handler_t event_handler;
bool module_initialized; /*< Indicate the state of module */
#if defined(USE_WORKAROUND_FOR_ANOMALY_201)
bool hfclk_started; /*< Anomaly 201 workaround. */
#endif
#if CALIBRATION_SUPPORT
volatile nrfx_clock_cal_state_t cal_state;
#endif // CALIBRATION_SUPPORT
} nrfx_clock_cb_t;
static nrfx_clock_cb_t m_clock_cb;
/**
* This variable is used to check whether common POWER_CLOCK common interrupt
* should be disabled or not if @ref nrfx_power tries to disable the interrupt.
*/
#if NRFX_CHECK(NRFX_POWER_ENABLED)
bool nrfx_clock_irq_enabled;
#endif
#if defined(NRF52832_XXAA) || defined(NRF52832_XXAB)
// ANOMALY 132 - LFCLK needs to avoid frame from 66us to 138us after LFCLK stop. This solution
// applies delay of 138us before starting LFCLK.
#define ANOMALY_132_REQ_DELAY_US 138UL
// nRF52832 is clocked with 64MHz.
#define ANOMALY_132_NRF52832_FREQ_MHZ 64UL
// Convert time to cycles.
#define ANOMALY_132_DELAY_CYCLES (ANOMALY_132_REQ_DELAY_US * ANOMALY_132_NRF52832_FREQ_MHZ)
/**
* @brief Function for applying delay of 138us before starting LFCLK.
*/
static void nrfx_clock_anomaly_132(void)
{
uint32_t cyccnt_inital;
uint32_t core_debug;
uint32_t dwt_ctrl;
// Preserve DEMCR register to do not influence into its configuration. Enable the trace and
// debug blocks. It is required to read and write data to DWT block.
core_debug = CoreDebug->DEMCR;
CoreDebug->DEMCR = core_debug | CoreDebug_DEMCR_TRCENA_Msk;
// Preserve CTRL register in DWT block to do not influence into its configuration. Make sure
// that cycle counter is enabled.
dwt_ctrl = DWT->CTRL;
DWT->CTRL = dwt_ctrl | DWT_CTRL_CYCCNTENA_Msk;
// Store start value of cycle counter.
cyccnt_inital = DWT->CYCCNT;
// Delay required time.
while ((DWT->CYCCNT - cyccnt_inital) < ANOMALY_132_DELAY_CYCLES)
{}
// Restore preserved registers.
DWT->CTRL = dwt_ctrl;
CoreDebug->DEMCR = core_debug;
}
#endif // defined(NRF52832_XXAA) || defined(NRF52832_XXAB)
nrfx_err_t nrfx_clock_init(nrfx_clock_event_handler_t event_handler)
{
NRFX_ASSERT(event_handler);
nrfx_err_t err_code = NRFX_SUCCESS;
if (m_clock_cb.module_initialized)
{
err_code = NRFX_ERROR_ALREADY_INITIALIZED;
}
else
{
#if CALIBRATION_SUPPORT
m_clock_cb.cal_state = CAL_STATE_IDLE;
#endif
m_clock_cb.event_handler = event_handler;
m_clock_cb.module_initialized = true;
#if defined(USE_WORKAROUND_FOR_ANOMALY_201)
m_clock_cb.hfclk_started = false;
#endif
}
NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
void nrfx_clock_enable(void)
{
NRFX_ASSERT(m_clock_cb.module_initialized);
nrfx_power_clock_irq_init();
nrf_clock_lf_src_set((nrf_clock_lfclk_t)NRFX_CLOCK_CONFIG_LF_SRC);
#if NRFX_CHECK(NRFX_POWER_ENABLED)
nrfx_clock_irq_enabled = true;
#endif
NRFX_LOG_INFO("Module enabled.");
}
void nrfx_clock_disable(void)
{
NRFX_ASSERT(m_clock_cb.module_initialized);
#if NRFX_CHECK(NRFX_POWER_ENABLED)
NRFX_ASSERT(nrfx_clock_irq_enabled);
if (!nrfx_power_irq_enabled)
#endif
{
NRFX_IRQ_DISABLE(POWER_CLOCK_IRQn);
}
nrf_clock_int_disable(CLOCK_INTENSET_HFCLKSTARTED_Msk |
CLOCK_INTENSET_LFCLKSTARTED_Msk |
CLOCK_INTENSET_DONE_Msk |
CLOCK_INTENSET_CTTO_Msk);
#if NRFX_CHECK(NRFX_POWER_ENABLED)
nrfx_clock_irq_enabled = false;
#endif
NRFX_LOG_INFO("Module disabled.");
}
void nrfx_clock_uninit(void)
{
NRFX_ASSERT(m_clock_cb.module_initialized);
nrfx_clock_lfclk_stop();
nrfx_clock_hfclk_stop();
m_clock_cb.module_initialized = false;
NRFX_LOG_INFO("Uninitialized.");
}
void nrfx_clock_lfclk_start(void)
{
NRFX_ASSERT(m_clock_cb.module_initialized);
nrf_clock_event_clear(NRF_CLOCK_EVENT_LFCLKSTARTED);
nrf_clock_int_enable(NRF_CLOCK_INT_LF_STARTED_MASK);
#if defined(NRF52832_XXAA) || defined(NRF52832_XXAB)
nrfx_clock_anomaly_132();
#endif
nrf_clock_task_trigger(NRF_CLOCK_TASK_LFCLKSTART);
}
void nrfx_clock_lfclk_stop(void)
{
NRFX_ASSERT(m_clock_cb.module_initialized);
nrf_clock_task_trigger(NRF_CLOCK_TASK_LFCLKSTOP);
while (nrf_clock_lf_is_running())
{}
}
void nrfx_clock_hfclk_start(void)
{
NRFX_ASSERT(m_clock_cb.module_initialized);
nrf_clock_event_clear(NRF_CLOCK_EVENT_HFCLKSTARTED);
nrf_clock_int_enable(NRF_CLOCK_INT_HF_STARTED_MASK);
nrf_clock_task_trigger(NRF_CLOCK_TASK_HFCLKSTART);
}
void nrfx_clock_hfclk_stop(void)
{
NRFX_ASSERT(m_clock_cb.module_initialized);
nrf_clock_task_trigger(NRF_CLOCK_TASK_HFCLKSTOP);
while (nrf_clock_hf_is_running(NRF_CLOCK_HFCLK_HIGH_ACCURACY))
{}
#if defined(USE_WORKAROUND_FOR_ANOMALY_201)
m_clock_cb.hfclk_started = false;
#endif
}
nrfx_err_t nrfx_clock_calibration_start(void)
{
nrfx_err_t err_code = NRFX_SUCCESS;
#if CALIBRATION_SUPPORT
if (nrfx_clock_hfclk_is_running() == false)
{
return NRFX_ERROR_INVALID_STATE;
}
if (nrfx_clock_lfclk_is_running() == false)
{
return NRFX_ERROR_INVALID_STATE;
}
if (m_clock_cb.cal_state == CAL_STATE_IDLE)
{
nrf_clock_event_clear(NRF_CLOCK_EVENT_DONE);
nrf_clock_int_enable(NRF_CLOCK_INT_DONE_MASK);
m_clock_cb.cal_state = CAL_STATE_CAL;
#if defined(USE_WORKAROUND_FOR_ANOMALY_192)
*(volatile uint32_t *)0x40000C34 = 0x00000002;
#endif
nrf_clock_task_trigger(NRF_CLOCK_TASK_CAL);
}
else
{
err_code = NRFX_ERROR_BUSY;
}
#endif // CALIBRATION_SUPPORT
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
nrfx_err_t nrfx_clock_is_calibrating(void)
{
#if CALIBRATION_SUPPORT
if (m_clock_cb.cal_state == CAL_STATE_CAL)
{
return NRFX_ERROR_BUSY;
}
#endif
return NRFX_SUCCESS;
}
void nrfx_clock_calibration_timer_start(uint8_t interval)
{
nrf_clock_cal_timer_timeout_set(interval);
nrf_clock_event_clear(NRF_CLOCK_EVENT_CTTO);
nrf_clock_int_enable(NRF_CLOCK_INT_CTTO_MASK);
nrf_clock_task_trigger(NRF_CLOCK_TASK_CTSTART);
}
void nrfx_clock_calibration_timer_stop(void)
{
nrf_clock_int_disable(NRF_CLOCK_INT_CTTO_MASK);
nrf_clock_task_trigger(NRF_CLOCK_TASK_CTSTOP);
}
void nrfx_clock_irq_handler(void)
{
if (nrf_clock_event_check(NRF_CLOCK_EVENT_HFCLKSTARTED))
{
nrf_clock_event_clear(NRF_CLOCK_EVENT_HFCLKSTARTED);
NRFX_LOG_DEBUG("Event: %s.", EVT_TO_STR(NRF_CLOCK_EVENT_HFCLKSTARTED));
nrf_clock_int_disable(NRF_CLOCK_INT_HF_STARTED_MASK);
#if defined(USE_WORKAROUND_FOR_ANOMALY_201)
if (!m_clock_cb.hfclk_started)
{
m_clock_cb.hfclk_started = true;
m_clock_cb.event_handler(NRFX_CLOCK_EVT_HFCLK_STARTED);
}
#else
m_clock_cb.event_handler(NRFX_CLOCK_EVT_HFCLK_STARTED);
#endif
}
if (nrf_clock_event_check(NRF_CLOCK_EVENT_LFCLKSTARTED))
{
nrf_clock_event_clear(NRF_CLOCK_EVENT_LFCLKSTARTED);
NRFX_LOG_DEBUG("Event: %s.", EVT_TO_STR(NRF_CLOCK_EVENT_LFCLKSTARTED));
nrf_clock_int_disable(NRF_CLOCK_INT_LF_STARTED_MASK);
m_clock_cb.event_handler(NRFX_CLOCK_EVT_LFCLK_STARTED);
}
#if CALIBRATION_SUPPORT
if (nrf_clock_event_check(NRF_CLOCK_EVENT_CTTO))
{
nrf_clock_event_clear(NRF_CLOCK_EVENT_CTTO);
NRFX_LOG_DEBUG("Event: %s.", EVT_TO_STR(NRF_CLOCK_EVENT_CTTO));
nrf_clock_int_disable(NRF_CLOCK_INT_CTTO_MASK);
m_clock_cb.event_handler(NRFX_CLOCK_EVT_CTTO);
}
if (nrf_clock_event_check(NRF_CLOCK_EVENT_DONE))
{
#if defined(USE_WORKAROUND_FOR_ANOMALY_192)
*(volatile uint32_t *)0x40000C34 = 0x00000000;
#endif
nrf_clock_event_clear(NRF_CLOCK_EVENT_DONE);
NRFX_LOG_DEBUG("Event: %s.", EVT_TO_STR(NRF_CLOCK_EVENT_DONE));
nrf_clock_int_disable(NRF_CLOCK_INT_DONE_MASK);
m_clock_cb.cal_state = CAL_STATE_IDLE;
m_clock_cb.event_handler(NRFX_CLOCK_EVT_CAL_DONE);
}
#endif // CALIBRATION_SUPPORT
}
#undef NRF_CLOCK_LFCLK_RC
#undef NRF_CLOCK_LFCLK_Xtal
#undef NRF_CLOCK_LFCLK_Synth
#endif // NRFX_CHECK(NRFX_CLOCK_ENABLED)