blob: 8d63e94f099ad989502c5f344bc634ac87b4b483 [file] [log] [blame]
/**
* Copyright (c) 2015 - 2018, Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "syscfg/syscfg.h"
#if MYNEWT_VAL(BSP_NRF52)
#include <nrfx.h>
#if NRFX_CHECK(NRFX_SAADC_ENABLED)
#include <nrfx_saadc.h>
#define NRFX_LOG_MODULE SAADC
#include <nrfx_log.h>
#define EVT_TO_STR(event) \
(event == NRF_SAADC_EVENT_STARTED ? "NRF_SAADC_EVENT_STARTED" : \
(event == NRF_SAADC_EVENT_END ? "NRF_SAADC_EVENT_END" : \
(event == NRF_SAADC_EVENT_DONE ? "NRF_SAADC_EVENT_DONE" : \
(event == NRF_SAADC_EVENT_RESULTDONE ? "NRF_SAADC_EVENT_RESULTDONE" : \
(event == NRF_SAADC_EVENT_CALIBRATEDONE ? "NRF_SAADC_EVENT_CALIBRATEDONE" : \
(event == NRF_SAADC_EVENT_STOPPED ? "NRF_SAADC_EVENT_STOPPED" : \
"UNKNOWN EVENT"))))))
typedef enum
{
NRF_SAADC_STATE_IDLE = 0,
NRF_SAADC_STATE_BUSY = 1,
NRF_SAADC_STATE_CALIBRATION = 2
} nrf_saadc_state_t;
typedef struct
{
nrf_saadc_input_t pselp;
nrf_saadc_input_t pseln;
} nrf_saadc_psel_buffer;
/** @brief SAADC control block.*/
typedef struct
{
nrfx_saadc_event_handler_t event_handler; ///< Event handler function pointer.
volatile nrf_saadc_value_t * p_buffer; ///< Sample buffer.
volatile uint16_t buffer_size; ///< Size of the sample buffer.
volatile nrf_saadc_value_t * p_secondary_buffer; ///< Secondary sample buffer.
volatile nrf_saadc_state_t adc_state; ///< State of the SAADC.
uint32_t limits_enabled_flags; ///< Enabled limits flags.
uint16_t secondary_buffer_size; ///< Size of the secondary buffer.
uint16_t buffer_size_left; ///< When low power mode is active indicates how many samples left to convert on current buffer.
nrf_saadc_psel_buffer psel[NRF_SAADC_CHANNEL_COUNT]; ///< Pin configurations of SAADC channels.
nrfx_drv_state_t state; ///< Driver initialization state.
uint8_t active_channels; ///< Number of enabled SAADC channels.
bool low_power_mode; ///< Indicates if low power mode is active.
bool conversions_end; ///< When low power mode is active indicates end of conversions on current buffer.
} nrfx_saadc_cb_t;
static nrfx_saadc_cb_t m_cb;
#define LOW_LIMIT_TO_FLAG(channel) ((2 * channel + 1))
#define HIGH_LIMIT_TO_FLAG(channel) ((2 * channel))
#define FLAG_IDX_TO_EVENT(idx) ((nrf_saadc_event_t)((uint32_t)NRF_SAADC_EVENT_CH0_LIMITH + \
4 * idx))
#define LIMIT_EVENT_TO_CHANNEL(event) (uint8_t)(((uint32_t)event - \
(uint32_t)NRF_SAADC_EVENT_CH0_LIMITH) / 8)
#define LIMIT_EVENT_TO_LIMIT_TYPE(event)((((uint32_t)event - (uint32_t)NRF_SAADC_EVENT_CH0_LIMITH) & 4) \
? NRF_SAADC_LIMIT_LOW : NRF_SAADC_LIMIT_HIGH)
#define HW_TIMEOUT 10000
void nrfx_saadc_irq_handler(void)
{
if (nrf_saadc_event_check(NRF_SAADC_EVENT_END))
{
nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
NRFX_LOG_DEBUG("Event: %s.", EVT_TO_STR(NRF_SAADC_EVENT_END));
if (!m_cb.low_power_mode || m_cb.conversions_end)
{
nrfx_saadc_evt_t evt;
evt.type = NRFX_SAADC_EVT_DONE;
evt.data.done.p_buffer = (nrf_saadc_value_t *)m_cb.p_buffer;
evt.data.done.size = m_cb.buffer_size;
if (m_cb.p_secondary_buffer == NULL)
{
m_cb.adc_state = NRF_SAADC_STATE_IDLE;
}
else
{
m_cb.buffer_size_left = m_cb.secondary_buffer_size;
m_cb.p_buffer = m_cb.p_secondary_buffer;
m_cb.buffer_size = m_cb.secondary_buffer_size;
m_cb.p_secondary_buffer = NULL;
if (!m_cb.low_power_mode)
{
nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
}
}
m_cb.event_handler(&evt);
m_cb.conversions_end = false;
}
}
if (m_cb.low_power_mode && nrf_saadc_event_check(NRF_SAADC_EVENT_STARTED))
{
nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
NRFX_LOG_DEBUG("Event: %s.", EVT_TO_STR(NRF_SAADC_EVENT_STARTED));
if (m_cb.buffer_size_left > m_cb.active_channels)
{
// More samples to convert than for single event.
m_cb.buffer_size_left -= m_cb.active_channels;
nrf_saadc_buffer_init((nrf_saadc_value_t *)&m_cb.p_buffer[m_cb.buffer_size -
m_cb.buffer_size_left],
m_cb.active_channels);
}
else if ((m_cb.buffer_size_left == m_cb.active_channels) &&
(m_cb.p_secondary_buffer != NULL))
{
// Samples to convert for one event, prepare next buffer.
m_cb.conversions_end = true;
m_cb.buffer_size_left = 0;
nrf_saadc_buffer_init((nrf_saadc_value_t *)m_cb.p_secondary_buffer,
m_cb.active_channels);
}
else if (m_cb.buffer_size_left == m_cb.active_channels)
{
// Samples to convert for one event, but no second buffer.
m_cb.conversions_end = true;
m_cb.buffer_size_left = 0;
}
nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE);
}
if (nrf_saadc_event_check(NRF_SAADC_EVENT_CALIBRATEDONE))
{
nrf_saadc_event_clear(NRF_SAADC_EVENT_CALIBRATEDONE);
NRFX_LOG_DEBUG("Event: %s.", EVT_TO_STR(NRF_SAADC_EVENT_CALIBRATEDONE));
m_cb.adc_state = NRF_SAADC_STATE_IDLE;
nrfx_saadc_evt_t evt;
evt.type = NRFX_SAADC_EVT_CALIBRATEDONE;
m_cb.event_handler(&evt);
}
if (nrf_saadc_event_check(NRF_SAADC_EVENT_STOPPED))
{
nrf_saadc_event_clear(NRF_SAADC_EVENT_STOPPED);
NRFX_LOG_DEBUG("Event: %s.", EVT_TO_STR(NRF_SAADC_EVENT_STOPPED));
m_cb.adc_state = NRF_SAADC_STATE_IDLE;
}
else
{
uint32_t limit_flags = m_cb.limits_enabled_flags;
uint32_t flag_idx;
nrf_saadc_event_t event;
while (limit_flags)
{
flag_idx = __CLZ(limit_flags);
limit_flags &= ~((1UL << 31) >> flag_idx);
event = FLAG_IDX_TO_EVENT(flag_idx);
if (nrf_saadc_event_check(event))
{
nrf_saadc_event_clear(event);
nrfx_saadc_evt_t evt;
evt.type = NRFX_SAADC_EVT_LIMIT;
evt.data.limit.channel = LIMIT_EVENT_TO_CHANNEL(event);
evt.data.limit.limit_type = LIMIT_EVENT_TO_LIMIT_TYPE(event);
NRFX_LOG_DEBUG("Event limit, channel: %d, limit type: %d.",
evt.data.limit.channel,
evt.data.limit.limit_type);
m_cb.event_handler(&evt);
}
}
}
}
nrfx_err_t nrfx_saadc_init(nrfx_saadc_config_t const * p_config,
nrfx_saadc_event_handler_t event_handler)
{
NRFX_ASSERT(p_config);
NRFX_ASSERT(event_handler);
nrfx_err_t err_code;
if (m_cb.state != NRFX_DRV_STATE_UNINITIALIZED)
{
err_code = NRFX_ERROR_INVALID_STATE;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
m_cb.event_handler = event_handler;
nrf_saadc_resolution_set(p_config->resolution);
nrf_saadc_oversample_set(p_config->oversample);
m_cb.low_power_mode = p_config->low_power_mode;
m_cb.state = NRFX_DRV_STATE_INITIALIZED;
m_cb.adc_state = NRF_SAADC_STATE_IDLE;
m_cb.active_channels = 0;
m_cb.limits_enabled_flags = 0;
m_cb.conversions_end = false;
nrf_saadc_int_disable(NRF_SAADC_INT_ALL);
nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
NRFX_IRQ_PRIORITY_SET(SAADC_IRQn, p_config->interrupt_priority);
NRFX_IRQ_ENABLE(SAADC_IRQn);
nrf_saadc_int_enable(NRF_SAADC_INT_END);
if (m_cb.low_power_mode)
{
nrf_saadc_int_enable(NRF_SAADC_INT_STARTED);
}
nrf_saadc_enable();
err_code = NRFX_SUCCESS;
NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
void nrfx_saadc_uninit(void)
{
NRFX_ASSERT(m_cb.state != NRFX_DRV_STATE_UNINITIALIZED);
nrf_saadc_int_disable(NRF_SAADC_INT_ALL);
NRFX_IRQ_DISABLE(SAADC_IRQn);
nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP);
// Wait for ADC being stopped.
bool result;
NRFX_WAIT_FOR(nrf_saadc_event_check(NRF_SAADC_EVENT_STOPPED), HW_TIMEOUT, 0, result);
NRFX_ASSERT(result);
nrf_saadc_disable();
m_cb.adc_state = NRF_SAADC_STATE_IDLE;
for (uint32_t channel = 0; channel < NRF_SAADC_CHANNEL_COUNT; ++channel)
{
if (m_cb.psel[channel].pselp != NRF_SAADC_INPUT_DISABLED)
{
nrfx_err_t err_code = nrfx_saadc_channel_uninit(channel);
NRFX_ASSERT(err_code == NRFX_SUCCESS);
}
}
m_cb.state = NRFX_DRV_STATE_UNINITIALIZED;
}
nrfx_err_t nrfx_saadc_channel_init(uint8_t channel,
nrf_saadc_channel_config_t const * const p_config)
{
NRFX_ASSERT(m_cb.state != NRFX_DRV_STATE_UNINITIALIZED);
NRFX_ASSERT(channel < NRF_SAADC_CHANNEL_COUNT);
// Oversampling can be used only with one channel.
NRFX_ASSERT((nrf_saadc_oversample_get() == NRF_SAADC_OVERSAMPLE_DISABLED) ||
(m_cb.active_channels == 0));
NRFX_ASSERT((p_config->pin_p <= NRF_SAADC_INPUT_VDD) &&
(p_config->pin_p > NRF_SAADC_INPUT_DISABLED));
NRFX_ASSERT(p_config->pin_n <= NRF_SAADC_INPUT_VDD);
nrfx_err_t err_code;
// A channel can only be initialized if the driver is in the idle state.
if (m_cb.adc_state != NRF_SAADC_STATE_IDLE)
{
err_code = NRFX_ERROR_BUSY;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
#ifdef NRF52_PAN_74
if ((p_config->acq_time == NRF_SAADC_ACQTIME_3US) ||
(p_config->acq_time == NRF_SAADC_ACQTIME_5US))
{
nrf_saadc_disable();
}
#endif //NRF52_PAN_74
if (m_cb.psel[channel].pselp == NRF_SAADC_INPUT_DISABLED)
{
++m_cb.active_channels;
}
m_cb.psel[channel].pselp = p_config->pin_p;
m_cb.psel[channel].pseln = p_config->pin_n;
nrf_saadc_channel_init(channel, p_config);
nrf_saadc_channel_input_set(channel, p_config->pin_p, p_config->pin_n);
#ifdef NRF52_PAN_74
if ((p_config->acq_time == NRF_SAADC_ACQTIME_3US) ||
(p_config->acq_time == NRF_SAADC_ACQTIME_5US))
{
nrf_saadc_enable();
}
#endif //NRF52_PAN_74
NRFX_LOG_INFO("Channel initialized: %d.", channel);
err_code = NRFX_SUCCESS;
NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
nrfx_err_t nrfx_saadc_channel_uninit(uint8_t channel)
{
NRFX_ASSERT(channel < NRF_SAADC_CHANNEL_COUNT);
NRFX_ASSERT(m_cb.state != NRFX_DRV_STATE_UNINITIALIZED);
nrfx_err_t err_code;
// A channel can only be uninitialized if the driver is in the idle state.
if (m_cb.adc_state != NRF_SAADC_STATE_IDLE)
{
err_code = NRFX_ERROR_BUSY;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
if (m_cb.psel[channel].pselp != NRF_SAADC_INPUT_DISABLED)
{
--m_cb.active_channels;
}
m_cb.psel[channel].pselp = NRF_SAADC_INPUT_DISABLED;
m_cb.psel[channel].pseln = NRF_SAADC_INPUT_DISABLED;
nrf_saadc_channel_input_set(channel, NRF_SAADC_INPUT_DISABLED, NRF_SAADC_INPUT_DISABLED);
nrfx_saadc_limits_set(channel, NRFX_SAADC_LIMITL_DISABLED, NRFX_SAADC_LIMITH_DISABLED);
NRFX_LOG_INFO("Channel denitialized: %d.", channel);
err_code = NRFX_SUCCESS;
NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
uint32_t nrfx_saadc_sample_task_get(void)
{
return nrf_saadc_task_address_get(
m_cb.low_power_mode ? NRF_SAADC_TASK_START : NRF_SAADC_TASK_SAMPLE);
}
nrfx_err_t nrfx_saadc_sample_convert(uint8_t channel, nrf_saadc_value_t * p_value)
{
nrfx_err_t err_code;
if (m_cb.adc_state != NRF_SAADC_STATE_IDLE)
{
err_code = NRFX_ERROR_BUSY;
NRFX_LOG_WARNING("Function: %s error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
m_cb.adc_state = NRF_SAADC_STATE_BUSY;
nrf_saadc_int_disable(NRF_SAADC_INT_STARTED | NRF_SAADC_INT_END);
nrf_saadc_buffer_init(p_value, 1);
if (m_cb.active_channels > 1)
{
for (uint32_t i = 0; i < NRF_SAADC_CHANNEL_COUNT; ++i)
{
nrf_saadc_channel_input_set(i, NRF_SAADC_INPUT_DISABLED, NRF_SAADC_INPUT_DISABLED);
}
}
nrf_saadc_channel_input_set(channel, m_cb.psel[channel].pselp, m_cb.psel[channel].pseln);
nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE);
bool result;
NRFX_WAIT_FOR(nrf_saadc_event_check(NRF_SAADC_EVENT_END), HW_TIMEOUT, 0, result);
NRFX_ASSERT(result);
nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
nrf_saadc_event_clear(NRF_SAADC_EVENT_END);
NRFX_LOG_INFO("Conversion value: %d, channel %d.", *p_value, channel);
if (m_cb.active_channels > 1)
{
for (uint32_t i = 0; i < NRF_SAADC_CHANNEL_COUNT; ++i)
{
nrf_saadc_channel_input_set(i, m_cb.psel[i].pselp, m_cb.psel[i].pseln);
}
}
if (m_cb.low_power_mode)
{
nrf_saadc_int_enable(NRF_SAADC_INT_STARTED | NRF_SAADC_INT_END);
}
else
{
nrf_saadc_int_enable(NRF_SAADC_INT_END);
}
m_cb.adc_state = NRF_SAADC_STATE_IDLE;
err_code = NRFX_SUCCESS;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
nrfx_err_t nrfx_saadc_buffer_convert(nrf_saadc_value_t * p_buffer, uint16_t size)
{
NRFX_ASSERT(m_cb.state != NRFX_DRV_STATE_UNINITIALIZED);
NRFX_ASSERT((size % m_cb.active_channels) == 0);
nrfx_err_t err_code;
nrf_saadc_int_disable(NRF_SAADC_INT_END | NRF_SAADC_INT_CALIBRATEDONE);
if (m_cb.adc_state == NRF_SAADC_STATE_CALIBRATION)
{
nrf_saadc_int_enable(NRF_SAADC_INT_END | NRF_SAADC_INT_CALIBRATEDONE);
err_code = NRFX_ERROR_BUSY;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
if (m_cb.adc_state == NRF_SAADC_STATE_BUSY)
{
if ( m_cb.p_secondary_buffer)
{
nrf_saadc_int_enable(NRF_SAADC_INT_END);
err_code = NRFX_ERROR_BUSY;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
else
{
m_cb.p_secondary_buffer = p_buffer;
m_cb.secondary_buffer_size = size;
if (!m_cb.low_power_mode)
{
while (nrf_saadc_event_check(NRF_SAADC_EVENT_STARTED) == 0);
nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
nrf_saadc_buffer_init(p_buffer, size);
}
nrf_saadc_int_enable(NRF_SAADC_INT_END);
err_code = NRFX_SUCCESS;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
}
nrf_saadc_int_enable(NRF_SAADC_INT_END);
m_cb.adc_state = NRF_SAADC_STATE_BUSY;
m_cb.p_buffer = p_buffer;
m_cb.buffer_size = size;
m_cb.p_secondary_buffer = NULL;
NRFX_LOG_INFO("Function: %s, buffer length: %d, active channels: %d.",
__func__,
size,
m_cb.active_channels);
if (m_cb.low_power_mode)
{
m_cb.buffer_size_left = size;
nrf_saadc_buffer_init(p_buffer, m_cb.active_channels);
}
else
{
nrf_saadc_buffer_init(p_buffer, size);
nrf_saadc_event_clear(NRF_SAADC_EVENT_STARTED);
nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
}
err_code = NRFX_SUCCESS;
NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
nrfx_err_t nrfx_saadc_sample()
{
NRFX_ASSERT(m_cb.state != NRFX_DRV_STATE_UNINITIALIZED);
nrfx_err_t err_code = NRFX_SUCCESS;
if (m_cb.adc_state != NRF_SAADC_STATE_BUSY)
{
err_code = NRFX_ERROR_INVALID_STATE;
}
else if (m_cb.low_power_mode)
{
nrf_saadc_task_trigger(NRF_SAADC_TASK_START);
}
else
{
nrf_saadc_task_trigger(NRF_SAADC_TASK_SAMPLE);
}
NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
nrfx_err_t nrfx_saadc_calibrate_offset()
{
NRFX_ASSERT(m_cb.state != NRFX_DRV_STATE_UNINITIALIZED);
nrfx_err_t err_code;
if (m_cb.adc_state != NRF_SAADC_STATE_IDLE)
{
err_code = NRFX_ERROR_BUSY;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
m_cb.adc_state = NRF_SAADC_STATE_CALIBRATION;
nrf_saadc_event_clear(NRF_SAADC_EVENT_CALIBRATEDONE);
nrf_saadc_int_enable(NRF_SAADC_INT_CALIBRATEDONE);
nrf_saadc_task_trigger(NRF_SAADC_TASK_CALIBRATEOFFSET);
err_code = NRFX_SUCCESS;
NRFX_LOG_INFO("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
bool nrfx_saadc_is_busy(void)
{
return (m_cb.adc_state != NRF_SAADC_STATE_IDLE);
}
void nrfx_saadc_abort(void)
{
if (nrfx_saadc_is_busy())
{
nrf_saadc_event_clear(NRF_SAADC_EVENT_STOPPED);
nrf_saadc_int_enable(NRF_SAADC_INT_STOPPED);
nrf_saadc_task_trigger(NRF_SAADC_TASK_STOP);
if (m_cb.adc_state == NRF_SAADC_STATE_CALIBRATION)
{
m_cb.adc_state = NRF_SAADC_STATE_IDLE;
}
else
{
// Wait for ADC being stopped.
bool result;
NRFX_WAIT_FOR((m_cb.adc_state != NRF_SAADC_STATE_IDLE), HW_TIMEOUT, 0, result);
NRFX_ASSERT(result);
}
nrf_saadc_int_disable(NRF_SAADC_INT_STOPPED);
m_cb.p_buffer = 0;
m_cb.p_secondary_buffer = 0;
NRFX_LOG_INFO("Conversion aborted.");
}
}
void nrfx_saadc_limits_set(uint8_t channel, int16_t limit_low, int16_t limit_high)
{
NRFX_ASSERT(m_cb.state != NRFX_DRV_STATE_UNINITIALIZED);
NRFX_ASSERT(m_cb.event_handler); // only non blocking mode supported
NRFX_ASSERT(limit_low >= NRFX_SAADC_LIMITL_DISABLED);
NRFX_ASSERT(limit_high <= NRFX_SAADC_LIMITH_DISABLED);
NRFX_ASSERT(limit_low < limit_high);
nrf_saadc_channel_limits_set(channel, limit_low, limit_high);
uint32_t int_mask = nrf_saadc_limit_int_get(channel, NRF_SAADC_LIMIT_LOW);
if (limit_low == NRFX_SAADC_LIMITL_DISABLED)
{
m_cb.limits_enabled_flags &= ~(0x80000000 >> LOW_LIMIT_TO_FLAG(channel));
nrf_saadc_int_disable(int_mask);
}
else
{
m_cb.limits_enabled_flags |= (0x80000000 >> LOW_LIMIT_TO_FLAG(channel));
nrf_saadc_int_enable(int_mask);
}
int_mask = nrf_saadc_limit_int_get(channel, NRF_SAADC_LIMIT_HIGH);
if (limit_high == NRFX_SAADC_LIMITH_DISABLED)
{
m_cb.limits_enabled_flags &= ~(0x80000000 >> HIGH_LIMIT_TO_FLAG(channel));
nrf_saadc_int_disable(int_mask);
}
else
{
m_cb.limits_enabled_flags |= (0x80000000 >> HIGH_LIMIT_TO_FLAG(channel));
nrf_saadc_int_enable(int_mask);
}
}
void nrfx_enable_adc_chan(int chan, nrf_saadc_input_t pselp,
nrf_saadc_input_t pseln)
{
NRFX_ASSERT(m_cb.active_channels < NRF_SAADC_CHANNEL_COUNT);
++m_cb.active_channels;
nrf_saadc_channel_input_set(chan, pselp, pseln);
}
void nrfx_disable_adc_chan(int chan)
{
NRFX_ASSERT(m_cb.active_channels != 0);
--m_cb.active_channels;
nrf_saadc_channel_input_set(chan, NRF_SAADC_INPUT_DISABLED,
NRF_SAADC_INPUT_DISABLED);
}
#endif // NRFX_CHECK(NRFX_SAADC_ENABLED)
#endif /* MYNEWT_VAL(BSP_NRF52) */