blob: b05d19463970b2ec3924067b14c4270ce252a1f6 [file] [log] [blame]
// Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
// Use of this source code is governed by a MIT license found in the LICENSE file.
package codec
// Test works by using a slice of interfaces.
// It can test for encoding/decoding into/from a nil interface{}
// or passing the object to encode/decode into.
//
// There are basically 2 main tests here.
// First test internally encodes and decodes things and verifies that
// the artifact was as expected.
// Second test will use python msgpack to create a bunch of golden files,
// read those files, and compare them to what it should be. It then
// writes those files back out and compares the byte streams.
//
// Taken together, the tests are pretty extensive.
//
// The following manual tests must be done:
// - TestCodecUnderlyingType
import (
"bytes"
"encoding/gob"
"fmt"
"io/ioutil"
"math"
"math/rand"
"net"
"net/rpc"
"os"
"os/exec"
"path/filepath"
"reflect"
"runtime"
"strconv"
"strings"
"sync/atomic"
"testing"
"time"
)
func init() {
testPreInitFns = append(testPreInitFns, testInit)
}
// make this a mapbyslice
type testMbsT []interface{}
func (_ testMbsT) MapBySlice() {}
type testVerifyArg int
const (
testVerifyMapTypeSame testVerifyArg = iota
testVerifyMapTypeStrIntf
testVerifyMapTypeIntfIntf
// testVerifySliceIntf
testVerifyForPython
)
const testSkipRPCTests = false
var (
testTableNumPrimitives int
testTableIdxTime int
testTableNumMaps int
)
var (
skipVerifyVal interface{} = &(struct{}{})
testMapStrIntfTyp = reflect.TypeOf(map[string]interface{}(nil))
// For Go Time, do not use a descriptive timezone.
// It's unnecessary, and makes it harder to do a reflect.DeepEqual.
// The Offset already tells what the offset should be, if not on UTC and unknown zone name.
timeLoc = time.FixedZone("", -8*60*60) // UTC-08:00 //time.UTC-8
timeToCompare1 = time.Date(2012, 2, 2, 2, 2, 2, 2000, timeLoc).UTC()
timeToCompare2 = time.Date(1900, 2, 2, 2, 2, 2, 2000, timeLoc).UTC()
timeToCompare3 = time.Unix(0, 270).UTC() // use value that must be encoded as uint64 for nanoseconds (for cbor/msgpack comparison)
//timeToCompare4 = time.Time{}.UTC() // does not work well with simple cbor time encoding (overflow)
timeToCompare4 = time.Unix(-2013855848, 4223).UTC()
table []interface{} // main items we encode
tableVerify []interface{} // we verify encoded things against this after decode
tableTestNilVerify []interface{} // for nil interface, use this to verify (rules are different)
tablePythonVerify []interface{} // for verifying for python, since Python sometimes
// will encode a float32 as float64, or large int as uint
testRpcInt = new(TestRpcInt)
)
func testByteBuf(in []byte) *bytes.Buffer {
return bytes.NewBuffer(in)
}
type TestABC struct {
A, B, C string
}
func (x *TestABC) MarshalBinary() ([]byte, error) {
return []byte(fmt.Sprintf("%s %s %s", x.A, x.B, x.C)), nil
}
func (x *TestABC) MarshalText() ([]byte, error) {
return []byte(fmt.Sprintf("%s %s %s", x.A, x.B, x.C)), nil
}
func (x *TestABC) MarshalJSON() ([]byte, error) {
return []byte(fmt.Sprintf(`"%s %s %s"`, x.A, x.B, x.C)), nil
}
func (x *TestABC) UnmarshalBinary(data []byte) (err error) {
ss := strings.Split(string(data), " ")
x.A, x.B, x.C = ss[0], ss[1], ss[2]
return
}
func (x *TestABC) UnmarshalText(data []byte) (err error) {
return x.UnmarshalBinary(data)
}
func (x *TestABC) UnmarshalJSON(data []byte) (err error) {
return x.UnmarshalBinary(data[1 : len(data)-1])
}
type TestABC2 struct {
A, B, C string
}
func (x TestABC2) MarshalText() ([]byte, error) {
return []byte(fmt.Sprintf("%s %s %s", x.A, x.B, x.C)), nil
}
func (x *TestABC2) UnmarshalText(data []byte) (err error) {
ss := strings.Split(string(data), " ")
x.A, x.B, x.C = ss[0], ss[1], ss[2]
return
// _, err = fmt.Sscanf(string(data), "%s %s %s", &x.A, &x.B, &x.C)
}
type TestRpcABC struct {
A, B, C string
}
type TestRpcInt struct {
i int
}
func (r *TestRpcInt) Update(n int, res *int) error { r.i = n; *res = r.i; return nil }
func (r *TestRpcInt) Square(ignore int, res *int) error { *res = r.i * r.i; return nil }
func (r *TestRpcInt) Mult(n int, res *int) error { *res = r.i * n; return nil }
func (r *TestRpcInt) EchoStruct(arg TestRpcABC, res *string) error {
*res = fmt.Sprintf("%#v", arg)
return nil
}
func (r *TestRpcInt) Echo123(args []string, res *string) error {
*res = fmt.Sprintf("%#v", args)
return nil
}
type TestRawValue struct {
R Raw
I int
}
type testUnixNanoTimeExt struct {
// keep timestamp here, so that do not incur interface-conversion costs
ts int64
}
// func (x *testUnixNanoTimeExt) WriteExt(interface{}) []byte { panic("unsupported") }
// func (x *testUnixNanoTimeExt) ReadExt(interface{}, []byte) { panic("unsupported") }
func (x *testUnixNanoTimeExt) ConvertExt(v interface{}) interface{} {
switch v2 := v.(type) {
case time.Time:
x.ts = v2.UTC().UnixNano()
case *time.Time:
x.ts = v2.UTC().UnixNano()
default:
panic(fmt.Sprintf("unsupported format for time conversion: expecting time.Time; got %T", v))
}
return &x.ts
}
func (x *testUnixNanoTimeExt) UpdateExt(dest interface{}, v interface{}) {
// fmt.Printf("testUnixNanoTimeExt.UpdateExt: v: %v\n", v)
tt := dest.(*time.Time)
switch v2 := v.(type) {
case int64:
*tt = time.Unix(0, v2).UTC()
case *int64:
*tt = time.Unix(0, *v2).UTC()
case uint64:
*tt = time.Unix(0, int64(v2)).UTC()
case *uint64:
*tt = time.Unix(0, int64(*v2)).UTC()
//case float64:
//case string:
default:
panic(fmt.Sprintf("unsupported format for time conversion: expecting int64/uint64; got %T", v))
}
// fmt.Printf("testUnixNanoTimeExt.UpdateExt: v: %v, tt: %#v\n", v, tt)
}
func testVerifyVal(v interface{}, arg testVerifyArg) (v2 interface{}) {
//for python msgpack,
// - all positive integers are unsigned 64-bit ints
// - all floats are float64
switch iv := v.(type) {
case int8:
if iv >= 0 {
v2 = uint64(iv)
} else {
v2 = int64(iv)
}
case int16:
if iv >= 0 {
v2 = uint64(iv)
} else {
v2 = int64(iv)
}
case int32:
if iv >= 0 {
v2 = uint64(iv)
} else {
v2 = int64(iv)
}
case int64:
if iv >= 0 {
v2 = uint64(iv)
} else {
v2 = int64(iv)
}
case uint8:
v2 = uint64(iv)
case uint16:
v2 = uint64(iv)
case uint32:
v2 = uint64(iv)
case uint64:
v2 = uint64(iv)
case float32:
v2 = float64(iv)
case float64:
v2 = float64(iv)
case []interface{}:
m2 := make([]interface{}, len(iv))
for j, vj := range iv {
m2[j] = testVerifyVal(vj, arg)
}
v2 = m2
case testMbsT:
m2 := make([]interface{}, len(iv))
for j, vj := range iv {
m2[j] = testVerifyVal(vj, arg)
}
v2 = testMbsT(m2)
case map[string]bool:
switch arg {
case testVerifyMapTypeSame:
m2 := make(map[string]bool)
for kj, kv := range iv {
m2[kj] = kv
}
v2 = m2
case testVerifyMapTypeStrIntf, testVerifyForPython:
m2 := make(map[string]interface{})
for kj, kv := range iv {
m2[kj] = kv
}
v2 = m2
case testVerifyMapTypeIntfIntf:
m2 := make(map[interface{}]interface{})
for kj, kv := range iv {
m2[kj] = kv
}
v2 = m2
}
case map[string]interface{}:
switch arg {
case testVerifyMapTypeSame:
m2 := make(map[string]interface{})
for kj, kv := range iv {
m2[kj] = testVerifyVal(kv, arg)
}
v2 = m2
case testVerifyMapTypeStrIntf, testVerifyForPython:
m2 := make(map[string]interface{})
for kj, kv := range iv {
m2[kj] = testVerifyVal(kv, arg)
}
v2 = m2
case testVerifyMapTypeIntfIntf:
m2 := make(map[interface{}]interface{})
for kj, kv := range iv {
m2[kj] = testVerifyVal(kv, arg)
}
v2 = m2
}
case map[interface{}]interface{}:
m2 := make(map[interface{}]interface{})
for kj, kv := range iv {
m2[testVerifyVal(kj, arg)] = testVerifyVal(kv, arg)
}
v2 = m2
case time.Time:
switch arg {
case testVerifyForPython:
if iv2 := iv.UnixNano(); iv2 >= 0 {
v2 = uint64(iv2)
} else {
v2 = int64(iv2)
}
default:
v2 = v
}
default:
v2 = v
}
return
}
func testInit() {
gob.Register(new(TestStruc))
if testInitDebug {
ts0 := newTestStruc(2, false, !testSkipIntf, false)
fmt.Printf("====> depth: %v, ts: %#v\n", 2, ts0)
}
for _, v := range testHandles {
bh := v.getBasicHandle()
bh.InternString = testInternStr
bh.Canonical = testCanonical
bh.CheckCircularRef = testCheckCircRef
bh.StructToArray = testStructToArray
bh.MaxInitLen = testMaxInitLen
// mostly doing this for binc
if testWriteNoSymbols {
bh.AsSymbols = AsSymbolNone
} else {
bh.AsSymbols = AsSymbolAll
}
}
testJsonH.Indent = int8(testJsonIndent)
testJsonH.HTMLCharsAsIs = testJsonHTMLCharsAsIs
testMsgpackH.RawToString = true
// testMsgpackH.AddExt(byteSliceTyp, 0, testMsgpackH.BinaryEncodeExt, testMsgpackH.BinaryDecodeExt)
// testMsgpackH.AddExt(timeTyp, 1, testMsgpackH.TimeEncodeExt, testMsgpackH.TimeDecodeExt)
// add extensions for msgpack, simple for time.Time, so we can encode/decode same way.
// use different flavors of XXXExt calls, including deprecated ones.
// NOTE:
// DO NOT set extensions for JsonH, so we can test json(M|Unm)arshal support.
testSimpleH.AddExt(timeTyp, 1, timeExtEncFn, timeExtDecFn)
testMsgpackH.SetBytesExt(timeTyp, 1, timeExt{})
testCborH.SetInterfaceExt(timeTyp, 1, &testUnixNanoTimeExt{})
// testJsonH.SetInterfaceExt(timeTyp, 1, &testUnixNanoTimeExt{})
// primitives MUST be an even number, so it can be used as a mapBySlice also.
primitives := []interface{}{
int8(-8),
int16(-1616),
int32(-32323232),
int64(-6464646464646464),
uint8(192),
uint16(1616),
uint32(32323232),
uint64(6464646464646464),
byte(192),
float32(-3232.0),
float64(-6464646464.0),
float32(3232.0),
float64(6464.0),
float64(6464646464.0),
false,
true,
"null",
nil,
"some&day>some<day",
timeToCompare1,
"",
timeToCompare2,
"bytestring",
timeToCompare3,
"none",
timeToCompare4,
}
maps := []interface{}{
map[string]bool{
"true": true,
"false": false,
},
map[string]interface{}{
"true": "True",
"false": false,
"uint16(1616)": uint16(1616),
},
//add a complex combo map in here. (map has list which has map)
//note that after the first thing, everything else should be generic.
map[string]interface{}{
"list": []interface{}{
int16(1616),
int32(32323232),
true,
float32(-3232.0),
map[string]interface{}{
"TRUE": true,
"FALSE": false,
},
[]interface{}{true, false},
},
"int32": int32(32323232),
"bool": true,
"LONG STRING": "123456789012345678901234567890123456789012345678901234567890",
"SHORT STRING": "1234567890",
},
map[interface{}]interface{}{
true: "true",
uint8(138): false,
"false": uint8(200),
},
}
testTableNumPrimitives = len(primitives)
testTableIdxTime = testTableNumPrimitives - 8
testTableNumMaps = len(maps)
table = []interface{}{}
table = append(table, primitives...)
table = append(table, primitives)
table = append(table, testMbsT(primitives))
table = append(table, maps...)
table = append(table, newTestStruc(0, false, !testSkipIntf, false))
tableVerify = make([]interface{}, len(table))
tableTestNilVerify = make([]interface{}, len(table))
tablePythonVerify = make([]interface{}, len(table))
lp := testTableNumPrimitives + 4
av := tableVerify
for i, v := range table {
if i == lp {
av[i] = skipVerifyVal
continue
}
//av[i] = testVerifyVal(v, testVerifyMapTypeSame)
switch v.(type) {
case []interface{}:
av[i] = testVerifyVal(v, testVerifyMapTypeSame)
case testMbsT:
av[i] = testVerifyVal(v, testVerifyMapTypeSame)
case map[string]interface{}:
av[i] = testVerifyVal(v, testVerifyMapTypeSame)
case map[interface{}]interface{}:
av[i] = testVerifyVal(v, testVerifyMapTypeSame)
default:
av[i] = v
}
}
av = tableTestNilVerify
for i, v := range table {
if i > lp {
av[i] = skipVerifyVal
continue
}
av[i] = testVerifyVal(v, testVerifyMapTypeStrIntf)
}
av = tablePythonVerify
for i, v := range table {
if i == testTableNumPrimitives+1 || i > lp { // testTableNumPrimitives+1 is the mapBySlice
av[i] = skipVerifyVal
continue
}
av[i] = testVerifyVal(v, testVerifyForPython)
}
// only do the python verify up to the maps, skipping the last 2 maps.
tablePythonVerify = tablePythonVerify[:testTableNumPrimitives+2+testTableNumMaps-2]
}
func testUnmarshal(v interface{}, data []byte, h Handle) (err error) {
return testCodecDecode(data, v, h)
}
func testMarshal(v interface{}, h Handle) (bs []byte, err error) {
return testCodecEncode(v, nil, testByteBuf, h)
}
func testMarshalErr(v interface{}, h Handle, t *testing.T, name string) (bs []byte, err error) {
if bs, err = testMarshal(v, h); err != nil {
logT(t, "Error encoding %s: %v, Err: %v", name, v, err)
t.FailNow()
}
return
}
func testUnmarshalErr(v interface{}, data []byte, h Handle, t *testing.T, name string) (err error) {
if err = testUnmarshal(v, data, h); err != nil {
logT(t, "Error Decoding into %s: %v, Err: %v", name, v, err)
t.FailNow()
}
return
}
// doTestCodecTableOne allows us test for different variations based on arguments passed.
func doTestCodecTableOne(t *testing.T, testNil bool, h Handle,
vs []interface{}, vsVerify []interface{}) {
//if testNil, then just test for when a pointer to a nil interface{} is passed. It should work.
//Current setup allows us test (at least manually) the nil interface or typed interface.
logT(t, "================ TestNil: %v ================\n", testNil)
for i, v0 := range vs {
logT(t, "..............................................")
logT(t, " Testing: #%d:, %T, %#v\n", i, v0, v0)
b0, err := testMarshalErr(v0, h, t, "v0")
if err != nil {
continue
}
if h.isBinary() {
logT(t, " Encoded bytes: len: %v, %v\n", len(b0), b0)
} else {
logT(t, " Encoded string: len: %v, %v\n", len(string(b0)), string(b0))
// println("########### encoded string: " + string(b0))
}
var v1 interface{}
if testNil {
err = testUnmarshal(&v1, b0, h)
} else {
if v0 != nil {
v0rt := reflect.TypeOf(v0) // ptr
rv1 := reflect.New(v0rt)
err = testUnmarshal(rv1.Interface(), b0, h)
v1 = rv1.Elem().Interface()
// v1 = reflect.Indirect(reflect.ValueOf(v1)).Interface()
}
}
logT(t, " v1 returned: %T, %#v", v1, v1)
// if v1 != nil {
// logT(t, " v1 returned: %T, %#v", v1, v1)
// //we always indirect, because ptr to typed value may be passed (if not testNil)
// v1 = reflect.Indirect(reflect.ValueOf(v1)).Interface()
// }
if err != nil {
logT(t, "-------- Error: %v. Partial return: %v", err, v1)
failT(t)
continue
}
v0check := vsVerify[i]
if v0check == skipVerifyVal {
logT(t, " Nil Check skipped: Decoded: %T, %#v\n", v1, v1)
continue
}
if err = deepEqual(v0check, v1); err == nil {
logT(t, "++++++++ Before and After marshal matched\n")
} else {
// logT(t, "-------- Before and After marshal do not match: Error: %v"+
// " ====> GOLDEN: (%T) %#v, DECODED: (%T) %#v\n", err, v0check, v0check, v1, v1)
logT(t, "-------- Before and After marshal do not match: Error: %v", err)
logT(t, " ....... GOLDEN: (%T) %#v", v0check, v0check)
logT(t, " ....... DECODED: (%T) %#v", v1, v1)
failT(t)
}
}
}
func testCodecTableOne(t *testing.T, h Handle) {
testOnce.Do(testInitAll)
// func TestMsgpackAllExperimental(t *testing.T) {
// dopts := testDecOpts(nil, nil, false, true, true),
numPrim, numMap, idxTime, idxMap := testTableNumPrimitives, testTableNumMaps, testTableIdxTime, testTableNumPrimitives+2
//println("#################")
switch v := h.(type) {
case *MsgpackHandle:
var oldWriteExt, oldRawToString bool
oldWriteExt, v.WriteExt = v.WriteExt, true
oldRawToString, v.RawToString = v.RawToString, true
doTestCodecTableOne(t, false, h, table, tableVerify)
v.WriteExt, v.RawToString = oldWriteExt, oldRawToString
case *JsonHandle:
//skip []interface{} containing time.Time, as it encodes as a number, but cannot decode back to time.Time.
//As there is no real support for extension tags in json, this must be skipped.
doTestCodecTableOne(t, false, h, table[:numPrim], tableVerify[:numPrim])
doTestCodecTableOne(t, false, h, table[idxMap:], tableVerify[idxMap:])
default:
doTestCodecTableOne(t, false, h, table, tableVerify)
}
// func TestMsgpackAll(t *testing.T) {
// //skip []interface{} containing time.Time
// doTestCodecTableOne(t, false, h, table[:numPrim], tableVerify[:numPrim])
// doTestCodecTableOne(t, false, h, table[numPrim+1:], tableVerify[numPrim+1:])
// func TestMsgpackNilStringMap(t *testing.T) {
var oldMapType reflect.Type
v := h.getBasicHandle()
oldMapType, v.MapType = v.MapType, testMapStrIntfTyp
//skip time.Time, []interface{} containing time.Time, last map, and newStruc
doTestCodecTableOne(t, true, h, table[:idxTime], tableTestNilVerify[:idxTime])
doTestCodecTableOne(t, true, h, table[idxMap:idxMap+numMap-1], tableTestNilVerify[idxMap:idxMap+numMap-1])
v.MapType = oldMapType
// func TestMsgpackNilIntf(t *testing.T) {
//do last map and newStruc
idx2 := idxMap + numMap - 1
doTestCodecTableOne(t, true, h, table[idx2:], tableTestNilVerify[idx2:])
//TODO? What is this one?
//doTestCodecTableOne(t, true, h, table[17:18], tableTestNilVerify[17:18])
}
func testCodecMiscOne(t *testing.T, h Handle) {
testOnce.Do(testInitAll)
b, err := testMarshalErr(32, h, t, "32")
// Cannot do this nil one, because faster type assertion decoding will panic
// var i *int32
// if err = testUnmarshal(b, i, nil); err == nil {
// logT(t, "------- Expecting error because we cannot unmarshal to int32 nil ptr")
// t.FailNow()
// }
var i2 int32 = 0
err = testUnmarshalErr(&i2, b, h, t, "int32-ptr")
if i2 != int32(32) {
logT(t, "------- didn't unmarshal to 32: Received: %d", i2)
t.FailNow()
}
// func TestMsgpackDecodePtr(t *testing.T) {
ts := newTestStruc(0, false, !testSkipIntf, false)
b, err = testMarshalErr(ts, h, t, "pointer-to-struct")
if len(b) < 40 {
logT(t, "------- Size must be > 40. Size: %d", len(b))
t.FailNow()
}
if h.isBinary() {
logT(t, "------- b: %v", b)
} else {
logT(t, "------- b: %s", b)
}
ts2 := new(TestStruc)
err = testUnmarshalErr(ts2, b, h, t, "pointer-to-struct")
if ts2.I64 != math.MaxInt64*2/3 {
logT(t, "------- Unmarshal wrong. Expect I64 = 64. Got: %v", ts2.I64)
t.FailNow()
}
// func TestMsgpackIntfDecode(t *testing.T) {
m := map[string]int{"A": 2, "B": 3}
p := []interface{}{m}
bs, err := testMarshalErr(p, h, t, "p")
m2 := map[string]int{}
p2 := []interface{}{m2}
err = testUnmarshalErr(&p2, bs, h, t, "&p2")
if m2["A"] != 2 || m2["B"] != 3 {
logT(t, "m2 not as expected: expecting: %v, got: %v", m, m2)
t.FailNow()
}
// log("m: %v, m2: %v, p: %v, p2: %v", m, m2, p, p2)
checkEqualT(t, p, p2, "p=p2")
checkEqualT(t, m, m2, "m=m2")
if err = deepEqual(p, p2); err == nil {
logT(t, "p and p2 match")
} else {
logT(t, "Not Equal: %v. p: %v, p2: %v", err, p, p2)
t.FailNow()
}
if err = deepEqual(m, m2); err == nil {
logT(t, "m and m2 match")
} else {
logT(t, "Not Equal: %v. m: %v, m2: %v", err, m, m2)
t.FailNow()
}
// func TestMsgpackDecodeStructSubset(t *testing.T) {
// test that we can decode a subset of the stream
mm := map[string]interface{}{"A": 5, "B": 99, "C": 333}
bs, err = testMarshalErr(mm, h, t, "mm")
type ttt struct {
A uint8
C int32
}
var t2 ttt
testUnmarshalErr(&t2, bs, h, t, "t2")
t3 := ttt{5, 333}
checkEqualT(t, t2, t3, "t2=t3")
// println(">>>>>")
// test simple arrays, non-addressable arrays, slices
type tarr struct {
A int64
B [3]int64
C []byte
D [3]byte
}
var tarr0 = tarr{1, [3]int64{2, 3, 4}, []byte{4, 5, 6}, [3]byte{7, 8, 9}}
// test both pointer and non-pointer (value)
for _, tarr1 := range []interface{}{tarr0, &tarr0} {
bs, err = testMarshalErr(tarr1, h, t, "tarr1")
if err != nil {
logT(t, "Error marshalling: %v", err)
t.FailNow()
}
if _, ok := h.(*JsonHandle); ok {
logT(t, "Marshal as: %s", bs)
}
var tarr2 tarr
testUnmarshalErr(&tarr2, bs, h, t, "tarr2")
checkEqualT(t, tarr0, tarr2, "tarr0=tarr2")
// fmt.Printf(">>>> err: %v. tarr1: %v, tarr2: %v\n", err, tarr0, tarr2)
}
// test byte array, even if empty (msgpack only)
if h == testMsgpackH {
type ystruct struct {
Anarray []byte
}
var ya = ystruct{}
testUnmarshalErr(&ya, []byte{0x91, 0x90}, h, t, "ya")
}
}
func testCodecEmbeddedPointer(t *testing.T, h Handle) {
testOnce.Do(testInitAll)
type Z int
type A struct {
AnInt int
}
type B struct {
*Z
*A
MoreInt int
}
var z Z = 4
x1 := &B{&z, &A{5}, 6}
bs, err := testMarshalErr(x1, h, t, "x1")
// fmt.Printf("buf: len(%v): %x\n", buf.Len(), buf.Bytes())
var x2 = new(B)
err = testUnmarshalErr(x2, bs, h, t, "x2")
err = checkEqualT(t, x1, x2, "x1=x2")
_ = err
}
func testCodecUnderlyingType(t *testing.T, h Handle) {
testOnce.Do(testInitAll)
// Manual Test.
// Run by hand, with accompanying print statements in fast-path.go
// to ensure that the fast functions are called.
type T1 map[string]string
v := T1{"1": "1s", "2": "2s"}
var bs []byte
var err error
NewEncoderBytes(&bs, h).MustEncode(v)
if err != nil {
logT(t, "Error during encode: %v", err)
failT(t)
}
var v2 T1
NewDecoderBytes(bs, h).MustDecode(&v2)
if err != nil {
logT(t, "Error during decode: %v", err)
failT(t)
}
}
func testCodecChan(t *testing.T, h Handle) {
// - send a slice []*int64 (sl1) into an chan (ch1) with cap > len(s1)
// - encode ch1 as a stream array
// - decode a chan (ch2), with cap > len(s1) from the stream array
// - receive from ch2 into slice sl2
// - compare sl1 and sl2
// - do this for codecs: json, cbor (covers all types)
sl1 := make([]*int64, 4)
for i := range sl1 {
var j int64 = int64(i)
sl1[i] = &j
}
ch1 := make(chan *int64, 4)
for _, j := range sl1 {
ch1 <- j
}
var bs []byte
NewEncoderBytes(&bs, h).MustEncode(ch1)
// if !h.isBinary() {
// fmt.Printf("before: len(ch1): %v, bs: %s\n", len(ch1), bs)
// }
// var ch2 chan *int64 // this will block if json, etc.
ch2 := make(chan *int64, 8)
NewDecoderBytes(bs, h).MustDecode(&ch2)
// logT(t, "Len(ch2): %v", len(ch2))
// fmt.Printf("after: len(ch2): %v, ch2: %v\n", len(ch2), ch2)
close(ch2)
var sl2 []*int64
for j := range ch2 {
sl2 = append(sl2, j)
}
if err := deepEqual(sl1, sl2); err != nil {
logT(t, "Not Match: %v; len: %v, %v", err, len(sl1), len(sl2))
failT(t)
}
}
func testCodecRpcOne(t *testing.T, rr Rpc, h Handle, doRequest bool, exitSleepMs time.Duration,
) (port int) {
testOnce.Do(testInitAll)
if testSkipRPCTests {
return
}
// rpc needs EOF, which is sent via a panic, and so must be recovered.
if !recoverPanicToErr {
logT(t, "EXPECTED. set recoverPanicToErr=true, since rpc needs EOF")
t.FailNow()
}
srv := rpc.NewServer()
srv.Register(testRpcInt)
ln, err := net.Listen("tcp", "127.0.0.1:0")
// log("listener: %v", ln.Addr())
checkErrT(t, err)
port = (ln.Addr().(*net.TCPAddr)).Port
// var opts *DecoderOptions
// opts := testDecOpts
// opts.MapType = mapStrIntfTyp
// opts.RawToString = false
serverExitChan := make(chan bool, 1)
var serverExitFlag uint64 = 0
serverFn := func() {
for {
conn1, err1 := ln.Accept()
// if err1 != nil {
// //fmt.Printf("accept err1: %v\n", err1)
// continue
// }
if atomic.LoadUint64(&serverExitFlag) == 1 {
serverExitChan <- true
conn1.Close()
return // exit serverFn goroutine
}
if err1 == nil {
var sc rpc.ServerCodec = rr.ServerCodec(conn1, h)
srv.ServeCodec(sc)
}
}
}
clientFn := func(cc rpc.ClientCodec) {
cl := rpc.NewClientWithCodec(cc)
defer cl.Close()
// defer func() { println("##### client closing"); cl.Close() }()
var up, sq, mult int
var rstr string
// log("Calling client")
checkErrT(t, cl.Call("TestRpcInt.Update", 5, &up))
// log("Called TestRpcInt.Update")
checkEqualT(t, testRpcInt.i, 5, "testRpcInt.i=5")
checkEqualT(t, up, 5, "up=5")
checkErrT(t, cl.Call("TestRpcInt.Square", 1, &sq))
checkEqualT(t, sq, 25, "sq=25")
checkErrT(t, cl.Call("TestRpcInt.Mult", 20, &mult))
checkEqualT(t, mult, 100, "mult=100")
checkErrT(t, cl.Call("TestRpcInt.EchoStruct", TestRpcABC{"Aa", "Bb", "Cc"}, &rstr))
checkEqualT(t, rstr, fmt.Sprintf("%#v", TestRpcABC{"Aa", "Bb", "Cc"}), "rstr=")
checkErrT(t, cl.Call("TestRpcInt.Echo123", []string{"A1", "B2", "C3"}, &rstr))
checkEqualT(t, rstr, fmt.Sprintf("%#v", []string{"A1", "B2", "C3"}), "rstr=")
}
connFn := func() (bs net.Conn) {
// log("calling f1")
bs, err2 := net.Dial(ln.Addr().Network(), ln.Addr().String())
//fmt.Printf("f1. bs: %v, err2: %v\n", bs, err2)
checkErrT(t, err2)
return
}
exitFn := func() {
atomic.StoreUint64(&serverExitFlag, 1)
bs := connFn()
<-serverExitChan
bs.Close()
// serverExitChan <- true
}
go serverFn()
runtime.Gosched()
//time.Sleep(100 * time.Millisecond)
if exitSleepMs == 0 {
defer ln.Close()
defer exitFn()
}
if doRequest {
bs := connFn()
cc := rr.ClientCodec(bs, h)
clientFn(cc)
}
if exitSleepMs != 0 {
go func() {
defer ln.Close()
time.Sleep(exitSleepMs)
exitFn()
}()
}
return
}
func doTestMapEncodeForCanonical(t *testing.T, name string, h Handle) {
v1 := map[string]interface{}{
"a": 1,
"b": "hello",
"c": map[string]interface{}{
"c/a": 1,
"c/b": "world",
"c/c": []int{1, 2, 3, 4},
"c/d": map[string]interface{}{
"c/d/a": "fdisajfoidsajfopdjsaopfjdsapofda",
"c/d/b": "fdsafjdposakfodpsakfopdsakfpodsakfpodksaopfkdsopafkdopsa",
"c/d/c": "poir02 ir30qif4p03qir0pogjfpoaerfgjp ofke[padfk[ewapf kdp[afep[aw",
"c/d/d": "fdsopafkd[sa f-32qor-=4qeof -afo-erfo r-eafo 4e- o r4-qwo ag",
"c/d/e": "kfep[a sfkr0[paf[a foe-[wq ewpfao-q ro3-q ro-4qof4-qor 3-e orfkropzjbvoisdb",
"c/d/f": "",
},
"c/e": map[int]string{
1: "1",
22: "22",
333: "333",
4444: "4444",
55555: "55555",
},
"c/f": map[string]int{
"1": 1,
"22": 22,
"333": 333,
"4444": 4444,
"55555": 55555,
},
},
}
var v2 map[string]interface{}
var b1, b2 []byte
// encode v1 into b1, decode b1 into v2, encode v2 into b2, compare b1 and b2
bh := h.getBasicHandle()
if !bh.Canonical {
bh.Canonical = true
defer func() { bh.Canonical = false }()
}
e1 := NewEncoderBytes(&b1, h)
e1.MustEncode(v1)
d1 := NewDecoderBytes(b1, h)
d1.MustDecode(&v2)
e2 := NewEncoderBytes(&b2, h)
e2.MustEncode(v2)
if !bytes.Equal(b1, b2) {
logT(t, "Unequal bytes: %v VS %v", b1, b2)
t.FailNow()
}
}
func doTestStdEncIntf(t *testing.T, name string, h Handle) {
args := [][2]interface{}{
{&TestABC{"A", "BB", "CCC"}, new(TestABC)},
{&TestABC2{"AAA", "BB", "C"}, new(TestABC2)},
}
for _, a := range args {
var b []byte
e := NewEncoderBytes(&b, h)
e.MustEncode(a[0])
d := NewDecoderBytes(b, h)
d.MustDecode(a[1])
if err := deepEqual(a[0], a[1]); err == nil {
logT(t, "++++ Objects match")
} else {
logT(t, "---- Objects do not match: y1: %v, err: %v", a[1], err)
failT(t)
}
}
}
func doTestEncCircularRef(t *testing.T, name string, h Handle) {
type T1 struct {
S string
B bool
T interface{}
}
type T2 struct {
S string
T *T1
}
type T3 struct {
S string
T *T2
}
t1 := T1{"t1", true, nil}
t2 := T2{"t2", &t1}
t3 := T3{"t3", &t2}
t1.T = &t3
var bs []byte
var err error
bh := h.getBasicHandle()
if !bh.CheckCircularRef {
bh.CheckCircularRef = true
defer func() { bh.CheckCircularRef = false }()
}
err = NewEncoderBytes(&bs, h).Encode(&t3)
if err == nil {
logT(t, "expecting error due to circular reference. found none")
t.FailNow()
}
if x := err.Error(); strings.Contains(x, "circular") || strings.Contains(x, "cyclic") {
logT(t, "error detected as expected: %v", x)
} else {
logT(t, "error detected was not as expected: %v", x)
t.FailNow()
}
}
// TestAnonCycleT{1,2,3} types are used to test anonymous cycles.
// They are top-level, so that they can have circular references.
type (
TestAnonCycleT1 struct {
S string
TestAnonCycleT2
}
TestAnonCycleT2 struct {
S2 string
TestAnonCycleT3
}
TestAnonCycleT3 struct {
*TestAnonCycleT1
}
)
func doTestAnonCycle(t *testing.T, name string, h Handle) {
var x TestAnonCycleT1
x.S = "hello"
x.TestAnonCycleT2.S2 = "hello.2"
x.TestAnonCycleT2.TestAnonCycleT3.TestAnonCycleT1 = &x
// just check that you can get typeInfo for T1
rt := reflect.TypeOf((*TestAnonCycleT1)(nil)).Elem()
rtid := reflect.ValueOf(rt).Pointer()
pti := h.getBasicHandle().getTypeInfo(rtid, rt)
logT(t, "pti: %v", pti)
}
func doTestJsonLargeInteger(t *testing.T, v interface{}, ias uint8) {
logT(t, "Running doTestJsonLargeInteger: v: %#v, ias: %c", v, ias)
oldIAS := testJsonH.IntegerAsString
defer func() { testJsonH.IntegerAsString = oldIAS }()
testJsonH.IntegerAsString = ias
var vu uint
var vi int
var vb bool
var b []byte
e := NewEncoderBytes(&b, testJsonH)
e.MustEncode(v)
e.MustEncode(true)
d := NewDecoderBytes(b, testJsonH)
// below, we validate that the json string or number was encoded,
// then decode, and validate that the correct value was decoded.
fnStrChk := func() {
// check that output started with ", and ended with "true
if !(b[0] == '"' && string(b[len(b)-5:]) == `"true`) {
logT(t, "Expecting a JSON string, got: %s", b)
failT(t)
}
}
switch ias {
case 'L':
switch v2 := v.(type) {
case int:
v2n := int64(v2) // done to work with 32-bit OS
if v2n > 1<<53 || (v2n < 0 && -v2n > 1<<53) {
fnStrChk()
}
case uint:
v2n := uint64(v2) // done to work with 32-bit OS
if v2n > 1<<53 {
fnStrChk()
}
}
case 'A':
fnStrChk()
default:
// check that output doesn't contain " at all
for _, i := range b {
if i == '"' {
logT(t, "Expecting a JSON Number without quotation: got: %s", b)
failT(t)
}
}
}
switch v2 := v.(type) {
case int:
d.MustDecode(&vi)
d.MustDecode(&vb)
// check that vb = true, and vi == v2
if !(vb && vi == v2) {
logT(t, "Expecting equal values from %s: got golden: %v, decoded: %v", b, v2, vi)
failT(t)
}
case uint:
d.MustDecode(&vu)
d.MustDecode(&vb)
// check that vb = true, and vi == v2
if !(vb && vu == v2) {
logT(t, "Expecting equal values from %s: got golden: %v, decoded: %v", b, v2, vu)
failT(t)
}
// fmt.Printf("%v: %s, decode: %d, bool: %v, equal_on_decode: %v\n", v, b, vu, vb, vu == v.(uint))
}
}
func doTestRawValue(t *testing.T, name string, h Handle) {
bh := h.getBasicHandle()
if !bh.Raw {
bh.Raw = true
defer func() { bh.Raw = false }()
}
var i, i2 int
var v, v2 TestRawValue
var bs, bs2 []byte
i = 1234 //1234567890
v = TestRawValue{I: i}
e := NewEncoderBytes(&bs, h)
e.MustEncode(v.I)
logT(t, ">>> raw: %v\n", bs)
v.R = Raw(bs)
e.ResetBytes(&bs2)
e.MustEncode(v)
logT(t, ">>> bs2: %v\n", bs2)
d := NewDecoderBytes(bs2, h)
d.MustDecode(&v2)
d.ResetBytes(v2.R)
logT(t, ">>> v2.R: %v\n", ([]byte)(v2.R))
d.MustDecode(&i2)
logT(t, ">>> Encoded %v, decoded %v\n", i, i2)
// logT(t, "Encoded %v, decoded %v", i, i2)
if i != i2 {
logT(t, "Error: encoded %v, decoded %v", i, i2)
t.FailNow()
}
}
// Comprehensive testing that generates data encoded from python handle (cbor, msgpack),
// and validates that our code can read and write it out accordingly.
// We keep this unexported here, and put actual test in ext_dep_test.go.
// This way, it can be excluded by excluding file completely.
func doTestPythonGenStreams(t *testing.T, name string, h Handle) {
logT(t, "TestPythonGenStreams-%v", name)
tmpdir, err := ioutil.TempDir("", "golang-"+name+"-test")
if err != nil {
logT(t, "-------- Unable to create temp directory\n")
t.FailNow()
}
defer os.RemoveAll(tmpdir)
logT(t, "tmpdir: %v", tmpdir)
cmd := exec.Command("python", "test.py", "testdata", tmpdir)
//cmd.Stdin = strings.NewReader("some input")
//cmd.Stdout = &out
var cmdout []byte
if cmdout, err = cmd.CombinedOutput(); err != nil {
logT(t, "-------- Error running test.py testdata. Err: %v", err)
logT(t, " %v", string(cmdout))
t.FailNow()
}
bh := h.getBasicHandle()
oldMapType := bh.MapType
for i, v := range tablePythonVerify {
// if v == uint64(0) && h == testMsgpackH {
// v = int64(0)
// }
bh.MapType = oldMapType
//load up the golden file based on number
//decode it
//compare to in-mem object
//encode it again
//compare to output stream
logT(t, "..............................................")
logT(t, " Testing: #%d: %T, %#v\n", i, v, v)
var bss []byte
bss, err = ioutil.ReadFile(filepath.Join(tmpdir, strconv.Itoa(i)+"."+name+".golden"))
if err != nil {
logT(t, "-------- Error reading golden file: %d. Err: %v", i, err)
failT(t)
continue
}
bh.MapType = testMapStrIntfTyp
var v1 interface{}
if err = testUnmarshal(&v1, bss, h); err != nil {
logT(t, "-------- Error decoding stream: %d: Err: %v", i, err)
failT(t)
continue
}
if v == skipVerifyVal {
continue
}
//no need to indirect, because we pass a nil ptr, so we already have the value
//if v1 != nil { v1 = reflect.Indirect(reflect.ValueOf(v1)).Interface() }
if err = deepEqual(v, v1); err == nil {
logT(t, "++++++++ Objects match: %T, %v", v, v)
} else {
logT(t, "-------- Objects do not match: %v. Source: %T. Decoded: %T", err, v, v1)
logT(t, "-------- GOLDEN: %#v", v)
// logT(t, "-------- DECODED: %#v <====> %#v", v1, reflect.Indirect(reflect.ValueOf(v1)).Interface())
logT(t, "-------- DECODED: %#v <====> %#v", v1, reflect.Indirect(reflect.ValueOf(v1)).Interface())
failT(t)
}
bsb, err := testMarshal(v1, h)
if err != nil {
logT(t, "Error encoding to stream: %d: Err: %v", i, err)
failT(t)
continue
}
if err = deepEqual(bsb, bss); err == nil {
logT(t, "++++++++ Bytes match")
} else {
logT(t, "???????? Bytes do not match. %v.", err)
xs := "--------"
if reflect.ValueOf(v).Kind() == reflect.Map {
xs = " "
logT(t, "%s It's a map. Ok that they don't match (dependent on ordering).", xs)
} else {
logT(t, "%s It's not a map. They should match.", xs)
failT(t)
}
logT(t, "%s FROM_FILE: %4d] %v", xs, len(bss), bss)
logT(t, "%s ENCODED: %4d] %v", xs, len(bsb), bsb)
}
}
bh.MapType = oldMapType
}
// To test MsgpackSpecRpc, we test 3 scenarios:
// - Go Client to Go RPC Service (contained within TestMsgpackRpcSpec)
// - Go client to Python RPC Service (contained within doTestMsgpackRpcSpecGoClientToPythonSvc)
// - Python Client to Go RPC Service (contained within doTestMsgpackRpcSpecPythonClientToGoSvc)
//
// This allows us test the different calling conventions
// - Go Service requires only one argument
// - Python Service allows multiple arguments
func doTestMsgpackRpcSpecGoClientToPythonSvc(t *testing.T) {
if testSkipRPCTests {
return
}
// openPorts are between 6700 and 6800
r := rand.New(rand.NewSource(time.Now().UnixNano()))
openPort := strconv.FormatInt(6700+r.Int63n(99), 10)
// openPort := "6792"
cmd := exec.Command("python", "test.py", "rpc-server", openPort, "4")
checkErrT(t, cmd.Start())
bs, err2 := net.Dial("tcp", ":"+openPort)
for i := 0; i < 10 && err2 != nil; i++ {
time.Sleep(50 * time.Millisecond) // time for python rpc server to start
bs, err2 = net.Dial("tcp", ":"+openPort)
}
checkErrT(t, err2)
cc := MsgpackSpecRpc.ClientCodec(bs, testMsgpackH)
cl := rpc.NewClientWithCodec(cc)
defer cl.Close()
var rstr string
checkErrT(t, cl.Call("EchoStruct", TestRpcABC{"Aa", "Bb", "Cc"}, &rstr))
//checkEqualT(t, rstr, "{'A': 'Aa', 'B': 'Bb', 'C': 'Cc'}")
var mArgs MsgpackSpecRpcMultiArgs = []interface{}{"A1", "B2", "C3"}
checkErrT(t, cl.Call("Echo123", mArgs, &rstr))
checkEqualT(t, rstr, "1:A1 2:B2 3:C3", "rstr=")
cmd.Process.Kill()
}
func doTestMsgpackRpcSpecPythonClientToGoSvc(t *testing.T) {
if testSkipRPCTests {
return
}
port := testCodecRpcOne(t, MsgpackSpecRpc, testMsgpackH, false, 1*time.Second)
//time.Sleep(1000 * time.Millisecond)
cmd := exec.Command("python", "test.py", "rpc-client-go-service", strconv.Itoa(port))
var cmdout []byte
var err error
if cmdout, err = cmd.CombinedOutput(); err != nil {
logT(t, "-------- Error running test.py rpc-client-go-service. Err: %v", err)
logT(t, " %v", string(cmdout))
t.FailNow()
}
checkEqualT(t, string(cmdout),
fmt.Sprintf("%#v\n%#v\n", []string{"A1", "B2", "C3"}, TestRpcABC{"Aa", "Bb", "Cc"}), "cmdout=")
}
func TestBincCodecsTable(t *testing.T) {
testCodecTableOne(t, testBincH)
}
func TestBincCodecsMisc(t *testing.T) {
testCodecMiscOne(t, testBincH)
}
func TestBincCodecsEmbeddedPointer(t *testing.T) {
testCodecEmbeddedPointer(t, testBincH)
}
func TestBincStdEncIntf(t *testing.T) {
doTestStdEncIntf(t, "binc", testBincH)
}
func TestSimpleCodecsTable(t *testing.T) {
testCodecTableOne(t, testSimpleH)
}
func TestSimpleCodecsMisc(t *testing.T) {
testCodecMiscOne(t, testSimpleH)
}
func TestSimpleCodecsEmbeddedPointer(t *testing.T) {
testCodecEmbeddedPointer(t, testSimpleH)
}
func TestSimpleStdEncIntf(t *testing.T) {
doTestStdEncIntf(t, "simple", testSimpleH)
}
func TestMsgpackCodecsTable(t *testing.T) {
testCodecTableOne(t, testMsgpackH)
}
func TestMsgpackCodecsMisc(t *testing.T) {
testCodecMiscOne(t, testMsgpackH)
}
func TestMsgpackCodecsEmbeddedPointer(t *testing.T) {
testCodecEmbeddedPointer(t, testMsgpackH)
}
func TestMsgpackStdEncIntf(t *testing.T) {
doTestStdEncIntf(t, "msgpack", testMsgpackH)
}
func TestCborCodecsTable(t *testing.T) {
testCodecTableOne(t, testCborH)
}
func TestCborCodecsMisc(t *testing.T) {
testCodecMiscOne(t, testCborH)
}
func TestCborCodecsEmbeddedPointer(t *testing.T) {
testCodecEmbeddedPointer(t, testCborH)
}
func TestCborMapEncodeForCanonical(t *testing.T) {
doTestMapEncodeForCanonical(t, "cbor", testCborH)
}
func TestCborCodecChan(t *testing.T) {
testCodecChan(t, testCborH)
}
func TestCborStdEncIntf(t *testing.T) {
doTestStdEncIntf(t, "cbor", testCborH)
}
func TestJsonCodecsTable(t *testing.T) {
testCodecTableOne(t, testJsonH)
}
func TestJsonCodecsMisc(t *testing.T) {
testCodecMiscOne(t, testJsonH)
}
func TestJsonCodecsEmbeddedPointer(t *testing.T) {
testCodecEmbeddedPointer(t, testJsonH)
}
func TestJsonCodecChan(t *testing.T) {
testCodecChan(t, testJsonH)
}
func TestJsonStdEncIntf(t *testing.T) {
doTestStdEncIntf(t, "json", testJsonH)
}
// ----- Raw ---------
func TestJsonRaw(t *testing.T) {
doTestRawValue(t, "json", testJsonH)
}
func TestBincRaw(t *testing.T) {
doTestRawValue(t, "binc", testBincH)
}
func TestMsgpackRaw(t *testing.T) {
doTestRawValue(t, "msgpack", testMsgpackH)
}
func TestSimpleRaw(t *testing.T) {
doTestRawValue(t, "simple", testSimpleH)
}
func TestCborRaw(t *testing.T) {
doTestRawValue(t, "cbor", testCborH)
}
// ----- ALL (framework based) -----
func TestAllEncCircularRef(t *testing.T) {
doTestEncCircularRef(t, "cbor", testCborH)
}
func TestAllAnonCycle(t *testing.T) {
doTestAnonCycle(t, "cbor", testCborH)
}
// ----- RPC -----
func TestBincRpcGo(t *testing.T) {
testCodecRpcOne(t, GoRpc, testBincH, true, 0)
}
func TestSimpleRpcGo(t *testing.T) {
testCodecRpcOne(t, GoRpc, testSimpleH, true, 0)
}
func TestMsgpackRpcGo(t *testing.T) {
testCodecRpcOne(t, GoRpc, testMsgpackH, true, 0)
}
func TestCborRpcGo(t *testing.T) {
testCodecRpcOne(t, GoRpc, testCborH, true, 0)
}
func TestJsonRpcGo(t *testing.T) {
testCodecRpcOne(t, GoRpc, testJsonH, true, 0)
}
func TestMsgpackRpcSpec(t *testing.T) {
testCodecRpcOne(t, MsgpackSpecRpc, testMsgpackH, true, 0)
}
func TestBincUnderlyingType(t *testing.T) {
testCodecUnderlyingType(t, testBincH)
}
func TestJsonLargeInteger(t *testing.T) {
for _, i := range []uint8{'L', 'A', 0} {
for _, j := range []interface{}{
int64(1 << 60),
-int64(1 << 60),
0,
1 << 20,
-(1 << 20),
uint64(1 << 60),
uint(0),
uint(1 << 20),
} {
doTestJsonLargeInteger(t, j, i)
}
}
}
func TestJsonDecodeNonStringScalarInStringContext(t *testing.T) {
var b = `{"s.true": "true", "b.true": true, "s.false": "false", "b.false": false, "s.10": "10", "i.10": 10, "i.-10": -10}`
var golden = map[string]string{"s.true": "true", "b.true": "true", "s.false": "false", "b.false": "false", "s.10": "10", "i.10": "10", "i.-10": "-10"}
var m map[string]string
d := NewDecoderBytes([]byte(b), testJsonH)
d.MustDecode(&m)
if err := deepEqual(golden, m); err == nil {
logT(t, "++++ match: decoded: %#v", m)
} else {
logT(t, "---- mismatch: %v ==> golden: %#v, decoded: %#v", err, golden, m)
failT(t)
}
}
// TODO:
// Add Tests for:
// - decoding empty list/map in stream into a nil slice/map
// - binary(M|Unm)arsher support for time.Time (e.g. cbor encoding)
// - text(M|Unm)arshaler support for time.Time (e.g. json encoding)
// - non fast-path scenarios e.g. map[string]uint16, []customStruct.
// Expand cbor to include indefinite length stuff for this non-fast-path types.
// This may not be necessary, since we have the manual tests (fastpathEnabled=false) to test/validate with.
// - CodecSelfer
// Ensure it is called when (en|de)coding interface{} or reflect.Value (2 different codepaths).
// - interfaces: textMarshaler, binaryMarshaler, codecSelfer
// - struct tags:
// on anonymous fields, _struct (all fields), etc
// - codecgen of struct containing channels.
// - bad input with large array length prefix
//
// Cleanup tests:
// - The are brittle in their handling of validation and skipping