blob: 82358d2ecc0469cfcdd5d2ea34e445d4781d1eef [file] [log] [blame]
/*
* This is a modified version of the file printf.c, which was distributed
* by Motorola as part of the M5407C3BOOT.zip package used to initialize
* the M5407C3 evaluation board.
*
* Copyright:
* 1999-2000 MOTOROLA, INC. All Rights Reserved.
* You are hereby granted a copyright license to use, modify, and
* distribute the SOFTWARE so long as this entire notice is
* retained without alteration in any modified and/or redistributed
* versions, and that such modified versions are clearly identified
* as such. No licenses are granted by implication, estoppel or
* otherwise under any patents or trademarks of Motorola, Inc. This
* software is provided on an "AS IS" basis and without warranty.
*
* To the maximum extent permitted by applicable law, MOTOROLA
* DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED, INCLUDING
* IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
* PURPOSE AND ANY WARRANTY AGAINST INFRINGEMENT WITH REGARD TO THE
* SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF) AND ANY
* ACCOMPANYING WRITTEN MATERIALS.
*
* To the maximum extent permitted by applicable law, IN NO EVENT
* SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING
* WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS
* INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY
* LOSS) ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
*
* Motorola assumes no responsibility for the maintenance and support
* of this software
* Copyright (c) 2015, Freescale Semiconductor, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of Freescale Semiconductor, Inc. nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <stdarg.h>
#include <stdlib.h>
#if defined(__CC_ARM)
#include <stdio.h>
#endif
#include <math.h>
#include "fsl_debug_console.h"
#if defined(FSL_FEATURE_SOC_UART_COUNT) && (FSL_FEATURE_SOC_UART_COUNT > 0)
#include "fsl_uart.h"
#endif /* FSL_FEATURE_SOC_UART_COUNT */
#if defined(FSL_FEATURE_SOC_LPSCI_COUNT) && (FSL_FEATURE_SOC_LPSCI_COUNT > 0)
#include "fsl_lpsci.h"
#endif /* FSL_FEATURE_SOC_LPSCI_COUNT */
#if defined(FSL_FEATURE_SOC_LPUART_COUNT) && (FSL_FEATURE_SOC_LPUART_COUNT > 0)
#include "fsl_lpuart.h"
#endif /* FSL_FEATURE_SOC_LPUART_COUNT */
/*! @brief Keil: suppress ellipsis warning in va_arg usage below. */
#if defined(__CC_ARM)
#pragma diag_suppress 1256
#endif /* __CC_ARM */
/*******************************************************************************
* Definitions
******************************************************************************/
/*! @brief This definition is maximum line that debugconsole can scanf each time.*/
#define IO_MAXLINE 20U
/*! @brief The overflow value.*/
#ifndef HUGE_VAL
#define HUGE_VAL (99.e99)
#endif /* HUGE_VAL */
#if SCANF_FLOAT_ENABLE
static double fnum = 0.0;
#endif /* SCANF_FLOAT_ENABLE */
/*! @brief Operation functions definitions for debug console. */
typedef struct DebugConsoleOperationFunctions
{
union
{
void (*PutChar)(void *base, const uint8_t *buffer, size_t length);
#if defined(FSL_FEATURE_SOC_UART_COUNT) && (FSL_FEATURE_SOC_UART_COUNT > 0)
void (*UART_PutChar)(UART_Type *base, const uint8_t *buffer, size_t length);
#endif /* FSL_FEATURE_SOC_UART_COUNT */
#if defined(FSL_FEATURE_SOC_LPSCI_COUNT) && (FSL_FEATURE_SOC_LPSCI_COUNT > 0)
void (*LPSCI_PutChar)(UART0_Type *base, const uint8_t *buffer, size_t length);
#endif /* FSL_FEATURE_SOC_LPSCI_COUNT */
#if defined(FSL_FEATURE_SOC_LPUART_COUNT) && (FSL_FEATURE_SOC_LPUART_COUNT > 0)
void (*LPUART_PutChar)(LPUART_Type *base, const uint8_t *buffer, size_t length);
#endif /* FSL_FEATURE_SOC_LPUART_COUNT */
} tx_union;
union
{
void (*GetChar)(void *base, const uint8_t *buffer, size_t length);
#if defined(FSL_FEATURE_SOC_UART_COUNT) && (FSL_FEATURE_SOC_UART_COUNT > 0)
status_t (*UART_GetChar)(UART_Type *base, uint8_t *buffer, size_t length);
#endif /* FSL_FEATURE_SOC_UART_COUNT */
#if defined(FSL_FEATURE_SOC_LPSCI_COUNT) && (FSL_FEATURE_SOC_LPSCI_COUNT > 0)
status_t (*LPSCI_GetChar)(UART0_Type *base, uint8_t *buffer, size_t length);
#endif /* FSL_FEATURE_SOC_LPSCI_COUNT */
#if defined(FSL_FEATURE_SOC_LPUART_COUNT) && (FSL_FEATURE_SOC_LPUART_COUNT > 0)
status_t (*LPUART_GetChar)(LPUART_Type *base, uint8_t *buffer, size_t length);
#endif /* FSL_FEATURE_SOC_LPUART_COUNT */
} rx_union;
} debug_console_ops_t;
/*! @brief State structure storing debug console. */
typedef struct DebugConsoleState
{
uint8_t type; /*!< Indicator telling whether the debug console is initialized. */
void *base; /*!< Base of the IP register. */
debug_console_ops_t ops; /*!< Operation function pointers for debug UART operations. */
} debug_console_state_t;
/*! @brief Type of KSDK printf function pointer. */
typedef int (*PUTCHAR_FUNC)(int a);
#if PRINTF_ADVANCED_ENABLE
/*! @brief Specification modifier flags for printf. */
enum _debugconsole_printf_flag
{
kPRINTF_Minus = 0x01U, /*!< Minus FLag. */
kPRINTF_Plus = 0x02U, /*!< Plus Flag. */
kPRINTF_Space = 0x04U, /*!< Space Flag. */
kPRINTF_Zero = 0x08U, /*!< Zero Flag. */
kPRINTF_Pound = 0x10U, /*!< Pound Flag. */
kPRINTF_LengthChar = 0x20U, /*!< Length: Char Flag. */
kPRINTF_LengthShortInt = 0x40U, /*!< Length: Short Int Flag. */
kPRINTF_LengthLongInt = 0x80U, /*!< Length: Long Int Flag. */
kPRINTF_LengthLongLongInt = 0x100U, /*!< Length: Long Long Int Flag. */
};
#endif /* PRINTF_ADVANCED_ENABLE */
/*! @brief Specification modifier flags for scanf. */
enum _debugconsole_scanf_flag
{
kSCANF_Suppress = 0x2U, /*!< Suppress Flag. */
kSCANF_DestMask = 0x7cU, /*!< Destination Mask. */
kSCANF_DestChar = 0x4U, /*!< Destination Char Flag. */
kSCANF_DestString = 0x8U, /*!< Destination String FLag. */
kSCANF_DestSet = 0x10U, /*!< Destination Set Flag. */
kSCANF_DestInt = 0x20U, /*!< Destination Int Flag. */
kSCANF_DestFloat = 0x30U, /*!< Destination Float Flag. */
kSCANF_LengthMask = 0x1f00U, /*!< Length Mask Flag. */
#if SCANF_ADVANCED_ENABLE
kSCANF_LengthChar = 0x100U, /*!< Length Char Flag. */
kSCANF_LengthShortInt = 0x200U, /*!< Length ShortInt Flag. */
kSCANF_LengthLongInt = 0x400U, /*!< Length LongInt Flag. */
kSCANF_LengthLongLongInt = 0x800U, /*!< Length LongLongInt Flag. */
#endif /* SCANF_ADVANCED_ENABLE */
#if PRINTF_FLOAT_ENABLE
kSCANF_LengthLongLongDouble = 0x1000U, /*!< Length LongLongDuoble Flag. */
#endif /*PRINTF_FLOAT_ENABLE */
kSCANF_TypeSinged = 0x2000U, /*!< TypeSinged Flag. */
};
/*******************************************************************************
* Variables
******************************************************************************/
/*! @brief Debug UART state information. */
static debug_console_state_t s_debugConsole = {.type = DEBUG_CONSOLE_DEVICE_TYPE_NONE, .base = NULL, .ops = {{0}, {0}}};
/*******************************************************************************
* Prototypes
******************************************************************************/
#if SDK_DEBUGCONSOLE
static int DbgConsole_PrintfFormattedData(PUTCHAR_FUNC func_ptr, char *fmt, va_list ap);
static int DbgConsole_ScanfFormattedData(const char *line_ptr, char *format, va_list args_ptr);
double modf(double input_dbl, double *intpart_ptr);
#endif /* SDK_DEBUGCONSOLE */
/*******************************************************************************
* Code
******************************************************************************/
/*************Code for DbgConsole Init, Deinit, Printf, Scanf *******************************/
/* See fsl_debug_console.h for documentation of this function. */
status_t DbgConsole_Init(uint32_t baseAddr, uint32_t baudRate, uint8_t device, uint32_t clkSrcFreq)
{
if (s_debugConsole.type != DEBUG_CONSOLE_DEVICE_TYPE_NONE)
{
return kStatus_Fail;
}
/* Set debug console to initialized to avoid duplicated initialized operation. */
s_debugConsole.type = device;
/* Switch between different device. */
switch (device)
{
#if defined(FSL_FEATURE_SOC_UART_COUNT) && (FSL_FEATURE_SOC_UART_COUNT > 0)
case DEBUG_CONSOLE_DEVICE_TYPE_UART:
{
uart_config_t uart_config;
s_debugConsole.base = (UART_Type *)baseAddr;
UART_GetDefaultConfig(&uart_config);
uart_config.baudRate_Bps = baudRate;
/* Enable clock and initial UART module follow user configure structure. */
UART_Init(s_debugConsole.base, &uart_config, clkSrcFreq);
UART_EnableTx(s_debugConsole.base, true);
UART_EnableRx(s_debugConsole.base, true);
/* Set the function pointer for send and receive for this kind of device. */
s_debugConsole.ops.tx_union.UART_PutChar = UART_WriteBlocking;
s_debugConsole.ops.rx_union.UART_GetChar = UART_ReadBlocking;
}
break;
#endif /* FSL_FEATURE_SOC_UART_COUNT */
#if defined(FSL_FEATURE_SOC_LPSCI_COUNT) && (FSL_FEATURE_SOC_LPSCI_COUNT > 0)
case DEBUG_CONSOLE_DEVICE_TYPE_LPSCI:
{
lpsci_config_t lpsci_config;
s_debugConsole.base = (UART0_Type *)baseAddr;
LPSCI_GetDefaultConfig(&lpsci_config);
lpsci_config.baudRate_Bps = baudRate;
/* Enable clock and initial UART module follow user configure structure. */
LPSCI_Init(s_debugConsole.base, &lpsci_config, clkSrcFreq);
LPSCI_EnableTx(s_debugConsole.base, true);
LPSCI_EnableRx(s_debugConsole.base, true);
/* Set the function pointer for send and receive for this kind of device. */
s_debugConsole.ops.tx_union.LPSCI_PutChar = LPSCI_WriteBlocking;
s_debugConsole.ops.rx_union.LPSCI_GetChar = LPSCI_ReadBlocking;
}
break;
#endif /* FSL_FEATURE_SOC_LPSCI_COUNT */
#if defined(FSL_FEATURE_SOC_LPUART_COUNT) && (FSL_FEATURE_SOC_LPUART_COUNT > 0)
case DEBUG_CONSOLE_DEVICE_TYPE_LPUART:
{
lpuart_config_t lpuart_config;
s_debugConsole.base = (LPUART_Type *)baseAddr;
LPUART_GetDefaultConfig(&lpuart_config);
lpuart_config.baudRate_Bps = baudRate;
/* Enable clock and initial UART module follow user configure structure. */
LPUART_Init(s_debugConsole.base, &lpuart_config, clkSrcFreq);
LPUART_EnableTx(s_debugConsole.base, true);
LPUART_EnableRx(s_debugConsole.base, true);
/* Set the function pointer for send and receive for this kind of device. */
s_debugConsole.ops.tx_union.LPUART_PutChar = LPUART_WriteBlocking;
s_debugConsole.ops.rx_union.LPUART_GetChar = LPUART_ReadBlocking;
}
break;
#endif /* FSL_FEATURE_SOC_LPUART_COUNT */
/* If new device is required as the low level device for debug console,
* Add the case branch and add the preprocessor macro to judge whether
* this kind of device exist in this SOC. */
default:
/* Device identified is invalid, return invalid device error code. */
return kStatus_InvalidArgument;
}
return kStatus_Success;
}
/* See fsl_debug_console.h for documentation of this function. */
status_t DbgConsole_Deinit(void)
{
if (s_debugConsole.type == DEBUG_CONSOLE_DEVICE_TYPE_NONE)
{
return kStatus_Success;
}
switch (s_debugConsole.type)
{
#if defined(FSL_FEATURE_SOC_UART_COUNT) && (FSL_FEATURE_SOC_UART_COUNT > 0)
case DEBUG_CONSOLE_DEVICE_TYPE_UART:
/* Disable UART module. */
UART_Deinit(s_debugConsole.base);
break;
#endif /* FSL_FEATURE_SOC_UART_COUNT */
#if defined(FSL_FEATURE_SOC_LPSCI_COUNT) && (FSL_FEATURE_SOC_LPSCI_COUNT > 0)
case DEBUG_CONSOLE_DEVICE_TYPE_LPSCI:
/* Disable LPSCI module. */
LPSCI_Deinit(s_debugConsole.base);
break;
#endif /* FSL_FEATURE_SOC_LPSCI_COUNT */
#if defined(FSL_FEATURE_SOC_LPUART_COUNT) && (FSL_FEATURE_SOC_LPUART_COUNT > 0)
case DEBUG_CONSOLE_DEVICE_TYPE_LPUART:
/* Disable LPUART module. */
LPUART_Deinit(s_debugConsole.base);
break;
#endif /* FSL_FEATURE_SOC_LPUART_COUNT */
default:
/* Device identified is invalid, return invalid device error code. */
return kStatus_InvalidArgument;
}
s_debugConsole.type = DEBUG_CONSOLE_DEVICE_TYPE_NONE;
return kStatus_Success;
}
#if SDK_DEBUGCONSOLE
/* See fsl_debug_console.h for documentation of this function. */
int DbgConsole_Printf(char *fmt_s, ...)
{
va_list ap;
int result;
/* Do nothing if the debug UART is not initialized. */
if (s_debugConsole.type == DEBUG_CONSOLE_DEVICE_TYPE_NONE)
{
return -1;
}
va_start(ap, fmt_s);
result = DbgConsole_PrintfFormattedData(DbgConsole_Putchar, fmt_s, ap);
va_end(ap);
return result;
}
/* See fsl_debug_console.h for documentation of this function. */
int DbgConsole_Putchar(int ch)
{
/* Do nothing if the debug UART is not initialized. */
if (s_debugConsole.type == DEBUG_CONSOLE_DEVICE_TYPE_NONE)
{
return -1;
}
s_debugConsole.ops.tx_union.PutChar(s_debugConsole.base, (uint8_t *)(&ch), 1);
return 1;
}
/* See fsl_debug_console.h for documentation of this function. */
int DbgConsole_Scanf(char *fmt_ptr, ...)
{
char temp_buf[IO_MAXLINE];
va_list ap;
uint32_t i;
char result;
/* Do nothing if the debug UART is not initialized. */
if (s_debugConsole.type == DEBUG_CONSOLE_DEVICE_TYPE_NONE)
{
return -1;
}
va_start(ap, fmt_ptr);
temp_buf[0] = '\0';
for (i = 0; i < IO_MAXLINE; i++)
{
temp_buf[i] = result = DbgConsole_Getchar();
if ((result == '\r') || (result == '\n'))
{
/* End of Line. */
if (i == 0)
{
i = (uint32_t)-1;
}
else
{
break;
}
}
temp_buf[i + 1] = '\0';
}
result = DbgConsole_ScanfFormattedData(temp_buf, fmt_ptr, ap);
va_end(ap);
return result;
}
/* See fsl_debug_console.h for documentation of this function. */
int DbgConsole_Getchar(void)
{
char ch;
/* Do nothing if the debug UART is not initialized. */
if (s_debugConsole.type == DEBUG_CONSOLE_DEVICE_TYPE_NONE)
{
return -1;
}
s_debugConsole.ops.rx_union.GetChar(s_debugConsole.base, (uint8_t *)(&ch), 1);
return ch;
}
/*************Code for process formatted data*******************************/
/*!
* @brief Scanline function which ignores white spaces.
*
* @param[in] s The address of the string pointer to update.
* @return String without white spaces.
*/
static uint32_t DbgConsole_ScanIgnoreWhiteSpace(const char **s)
{
uint8_t count = 0;
uint8_t c;
c = **s;
while ((c == ' ') || (c == '\t') || (c == '\n') || (c == '\r') || (c == '\v') || (c == '\f'))
{
count++;
(*s)++;
c = **s;
}
return count;
}
/*!
* @brief This function puts padding character.
*
* @param[in] c Padding character.
* @param[in] curlen Length of current formatted string .
* @param[in] width Width of expected formatted string.
* @param[in] count Number of characters.
* @param[in] func_ptr Function to put character out.
*/
static void DbgConsole_PrintfPaddingCharacter(
char c, int32_t curlen, int32_t width, int32_t *count, PUTCHAR_FUNC func_ptr)
{
int32_t i;
for (i = curlen; i < width; i++)
{
func_ptr(c);
(*count)++;
}
}
/*!
* @brief Converts a radix number to a string and return its length.
*
* @param[in] numstr Converted string of the number.
* @param[in] nump Pointer to the number.
* @param[in] neg Polarity of the number.
* @param[in] radix The radix to be converted to.
* @param[in] use_caps Used to identify %x/X output format.
* @return Length of the converted string.
*/
static int32_t DbgConsole_ConvertRadixNumToString(char *numstr, void *nump, int32_t neg, int32_t radix, bool use_caps)
{
#if PRINTF_ADVANCED_ENABLE
int64_t a;
int64_t b;
int64_t c;
uint64_t ua;
uint64_t ub;
uint64_t uc;
#else
int32_t a;
int32_t b;
int32_t c;
uint32_t ua;
uint32_t ub;
uint32_t uc;
#endif /* PRINTF_ADVANCED_ENABLE */
int32_t nlen;
char *nstrp;
nlen = 0;
nstrp = numstr;
*nstrp++ = '\0';
if (neg)
{
#if PRINTF_ADVANCED_ENABLE
a = *(int64_t *)nump;
#else
a = *(int32_t *)nump;
#endif /* PRINTF_ADVANCED_ENABLE */
if (a == 0)
{
*nstrp = '0';
++nlen;
return nlen;
}
while (a != 0)
{
#if PRINTF_ADVANCED_ENABLE
b = (int64_t)a / (int64_t)radix;
c = (int64_t)a - ((int64_t)b * (int64_t)radix);
if (c < 0)
{
uc = (uint64_t)c;
c = (int64_t)(~uc) + 1 + '0';
}
#else
b = a / radix;
c = a - (b * radix);
if (c < 0)
{
uc = (uint32_t)c;
c = (uint32_t)(~uc) + 1 + '0';
}
#endif /* PRINTF_ADVANCED_ENABLE */
else
{
c = c + '0';
}
a = b;
*nstrp++ = (char)c;
++nlen;
}
}
else
{
#if PRINTF_ADVANCED_ENABLE
ua = *(uint64_t *)nump;
#else
ua = *(uint32_t *)nump;
#endif /* PRINTF_ADVANCED_ENABLE */
if (ua == 0)
{
*nstrp = '0';
++nlen;
return nlen;
}
while (ua != 0)
{
#if PRINTF_ADVANCED_ENABLE
ub = (uint64_t)ua / (uint64_t)radix;
uc = (uint64_t)ua - ((uint64_t)ub * (uint64_t)radix);
#else
ub = ua / (uint32_t)radix;
uc = ua - (ub * (uint32_t)radix);
#endif /* PRINTF_ADVANCED_ENABLE */
if (uc < 10)
{
uc = uc + '0';
}
else
{
uc = uc - 10 + (use_caps ? 'A' : 'a');
}
ua = ub;
*nstrp++ = (char)uc;
++nlen;
}
}
return nlen;
}
#if PRINTF_FLOAT_ENABLE
/*!
* @brief Converts a floating radix number to a string and return its length.
*
* @param[in] numstr Converted string of the number.
* @param[in] nump Pointer to the number.
* @param[in] radix The radix to be converted to.
* @param[in] precision_width Specify the precision width.
* @return Length of the converted string.
*/
static int32_t DbgConsole_ConvertFloatRadixNumToString(char *numstr,
void *nump,
int32_t radix,
uint32_t precision_width)
{
int32_t a;
int32_t b;
int32_t c;
int32_t i;
uint32_t uc;
double fa;
double dc;
double fb;
double r;
double fractpart;
double intpart;
int32_t nlen;
char *nstrp;
nlen = 0;
nstrp = numstr;
*nstrp++ = '\0';
r = *(double *)nump;
if (!r)
{
*nstrp = '0';
++nlen;
return nlen;
}
fractpart = modf((double)r, (double *)&intpart);
/* Process fractional part. */
for (i = 0; i < precision_width; i++)
{
fractpart *= radix;
}
if (r >= 0)
{
fa = fractpart + (double)0.5;
if (fa >= pow(10, precision_width))
{
intpart++;
}
}
else
{
fa = fractpart - (double)0.5;
if (fa <= pow(-10, precision_width))
{
intpart--;
}
}
for (i = 0; i < precision_width; i++)
{
fb = fa / (int32_t)radix;
dc = (fa - (int64_t)fb * (int32_t)radix);
c = (int32_t)dc;
if (c < 0)
{
uc = (uint32_t)c;
c = (int32_t)(~uc) + 1 + '0';
}
else
{
c = c + '0';
}
fa = fb;
*nstrp++ = (char)c;
++nlen;
}
*nstrp++ = (char)'.';
++nlen;
a = (int32_t)intpart;
if (a == 0)
{
*nstrp++ = '0';
++nlen;
}
else
{
while (a != 0)
{
b = (int32_t)a / (int32_t)radix;
c = (int32_t)a - ((int32_t)b * (int32_t)radix);
if (c < 0)
{
uc = (uint32_t)c;
c = (int32_t)(~uc) + 1 + '0';
}
else
{
c = c + '0';
}
a = b;
*nstrp++ = (char)c;
++nlen;
}
}
return nlen;
}
#endif /* PRINTF_FLOAT_ENABLE */
/*!
* @brief This function outputs its parameters according to a formatted string.
*
* @note I/O is performed by calling given function pointer using following
* (*func_ptr)(c);
*
* @param[in] func_ptr Function to put character out.
* @param[in] fmt_ptr Format string for printf.
* @param[in] args_ptr Arguments to printf.
*
* @return Number of characters
*/
static int DbgConsole_PrintfFormattedData(PUTCHAR_FUNC func_ptr, char *fmt, va_list ap)
{
/* va_list ap; */
char *p;
int32_t c;
char vstr[33];
char *vstrp = NULL;
int32_t vlen = 0;
int32_t done;
int32_t count = 0;
uint32_t field_width;
uint32_t precision_width;
char *sval;
int32_t cval;
bool use_caps;
uint8_t radix = 0;
#if PRINTF_ADVANCED_ENABLE
uint32_t flags_used;
int32_t schar, dschar;
int64_t ival;
uint64_t uval = 0;
#else
int32_t ival;
uint32_t uval = 0;
#endif /* PRINTF_ADVANCED_ENABLE */
#if PRINTF_FLOAT_ENABLE
double fval;
#endif /* PRINTF_FLOAT_ENABLE */
/* Start parsing apart the format string and display appropriate formats and data. */
for (p = (char *)fmt; (c = *p) != 0; p++)
{
/*
* All formats begin with a '%' marker. Special chars like
* '\n' or '\t' are normally converted to the appropriate
* character by the __compiler__. Thus, no need for this
* routine to account for the '\' character.
*/
if (c != '%')
{
func_ptr(c);
count++;
/* By using 'continue', the next iteration of the loop is used, skipping the code that follows. */
continue;
}
use_caps = true;
#if PRINTF_ADVANCED_ENABLE
/* First check for specification modifier flags. */
flags_used = 0;
done = false;
while (!done)
{
switch (*++p)
{
case '-':
flags_used |= kPRINTF_Minus;
break;
case '+':
flags_used |= kPRINTF_Plus;
break;
case ' ':
flags_used |= kPRINTF_Space;
break;
case '0':
flags_used |= kPRINTF_Zero;
break;
case '#':
flags_used |= kPRINTF_Pound;
break;
default:
/* We've gone one char too far. */
--p;
done = true;
break;
}
}
#endif /* PRINTF_ADVANCED_ENABLE */
/* Next check for minimum field width. */
field_width = 0;
done = false;
while (!done)
{
c = *++p;
if ((c >= '0') && (c <= '9'))
{
field_width = (field_width * 10) + (c - '0');
}
else
{
/* We've gone one char too far. */
--p;
done = true;
}
}
/* Next check for the width and precision field separator. */
precision_width = 6;
if (*++p == '.')
{
/* Must get precision field width, if present. */
precision_width = 0;
done = false;
while (!done)
{
c = *++p;
if ((c >= '0') && (c <= '9'))
{
precision_width = (precision_width * 10) + (c - '0');
}
else
{
/* We've gone one char too far. */
--p;
done = true;
}
}
}
else
{
/* We've gone one char too far. */
--p;
}
#if PRINTF_ADVANCED_ENABLE
/*
* Check for the length modifier.
*/
switch (/* c = */ *++p)
{
case 'h':
if (*++p != 'h')
{
flags_used |= kPRINTF_LengthShortInt;
--p;
}
else
{
flags_used |= kPRINTF_LengthChar;
}
break;
case 'l':
if (*++p != 'l')
{
flags_used |= kPRINTF_LengthLongInt;
--p;
}
else
{
flags_used |= kPRINTF_LengthLongLongInt;
}
break;
default:
/* we've gone one char too far */
--p;
break;
}
#endif /* PRINTF_ADVANCED_ENABLE */
/* Now we're ready to examine the format. */
c = *++p;
{
if ((c == 'd') || (c == 'i') || (c == 'f') || (c == 'F') || (c == 'x') || (c == 'X') || (c == 'o') ||
(c == 'b') || (c == 'p') || (c == 'u'))
{
if ((c == 'd') || (c == 'i'))
{
#if PRINTF_ADVANCED_ENABLE
if (flags_used & kPRINTF_LengthLongLongInt)
{
ival = (int64_t)va_arg(ap, int64_t);
}
else
#endif /* PRINTF_ADVANCED_ENABLE */
{
ival = (int32_t)va_arg(ap, int32_t);
}
vlen = DbgConsole_ConvertRadixNumToString(vstr, &ival, true, 10, use_caps);
vstrp = &vstr[vlen];
#if PRINTF_ADVANCED_ENABLE
if (ival < 0)
{
schar = '-';
++vlen;
}
else
{
if (flags_used & kPRINTF_Plus)
{
schar = '+';
++vlen;
}
else
{
if (flags_used & kPRINTF_Space)
{
schar = ' ';
++vlen;
}
else
{
schar = 0;
}
}
}
dschar = false;
/* Do the ZERO pad. */
if (flags_used & kPRINTF_Zero)
{
if (schar)
{
func_ptr(schar);
count++;
}
dschar = true;
DbgConsole_PrintfPaddingCharacter('0', vlen, field_width, &count, func_ptr);
vlen = field_width;
}
else
{
if (!(flags_used & kPRINTF_Minus))
{
DbgConsole_PrintfPaddingCharacter(' ', vlen, field_width, &count, func_ptr);
if (schar)
{
func_ptr(schar);
count++;
}
dschar = true;
}
}
/* The string was built in reverse order, now display in correct order. */
if ((!dschar) && schar)
{
func_ptr(schar);
count++;
}
#endif /* PRINTF_ADVANCED_ENABLE */
}
#if PRINTF_FLOAT_ENABLE
if ((c == 'f') || (c == 'F'))
{
fval = (double)va_arg(ap, double);
vlen = DbgConsole_ConvertFloatRadixNumToString(vstr, &fval, 10, precision_width);
vstrp = &vstr[vlen];
#if PRINTF_ADVANCED_ENABLE
if (fval < 0)
{
schar = '-';
++vlen;
}
else
{
if (flags_used & kPRINTF_Plus)
{
schar = '+';
++vlen;
}
else
{
if (flags_used & kPRINTF_Space)
{
schar = ' ';
++vlen;
}
else
{
schar = 0;
}
}
}
dschar = false;
if (flags_used & kPRINTF_Zero)
{
if (schar)
{
func_ptr(schar);
count++;
}
dschar = true;
DbgConsole_PrintfPaddingCharacter('0', vlen, field_width, &count, func_ptr);
vlen = field_width;
}
else
{
if (!(flags_used & kPRINTF_Minus))
{
DbgConsole_PrintfPaddingCharacter(' ', vlen, field_width, &count, func_ptr);
if (schar)
{
func_ptr(schar);
count++;
}
dschar = true;
}
}
if ((!dschar) && schar)
{
func_ptr(schar);
count++;
}
#endif /* PRINTF_ADVANCED_ENABLE */
}
#endif /* PRINTF_FLOAT_ENABLE */
if ((c == 'X') || (c == 'x'))
{
if (c == 'x')
{
use_caps = false;
}
#if PRINTF_ADVANCED_ENABLE
if (flags_used & kPRINTF_LengthLongLongInt)
{
uval = (uint64_t)va_arg(ap, uint64_t);
}
else
#endif /* PRINTF_ADVANCED_ENABLE */
{
uval = (uint32_t)va_arg(ap, uint32_t);
}
vlen = DbgConsole_ConvertRadixNumToString(vstr, &uval, false, 16, use_caps);
vstrp = &vstr[vlen];
#if PRINTF_ADVANCED_ENABLE
dschar = false;
if (flags_used & kPRINTF_Zero)
{
if (flags_used & kPRINTF_Pound)
{
func_ptr('0');
func_ptr((use_caps ? 'X' : 'x'));
count += 2;
/*vlen += 2;*/
dschar = true;
}
DbgConsole_PrintfPaddingCharacter('0', vlen, field_width, &count, func_ptr);
vlen = field_width;
}
else
{
if (!(flags_used & kPRINTF_Minus))
{
if (flags_used & kPRINTF_Pound)
{
vlen += 2;
}
DbgConsole_PrintfPaddingCharacter(' ', vlen, field_width, &count, func_ptr);
if (flags_used & kPRINTF_Pound)
{
func_ptr('0');
func_ptr(use_caps ? 'X' : 'x');
count += 2;
dschar = true;
}
}
}
if ((flags_used & kPRINTF_Pound) && (!dschar))
{
func_ptr('0');
func_ptr(use_caps ? 'X' : 'x');
count += 2;
vlen += 2;
}
#endif /* PRINTF_ADVANCED_ENABLE */
}
if (c == 'o')
{
uval = (uint32_t)va_arg(ap, uint32_t);
radix = 8;
}
if (c == 'b')
{
uval = (uint32_t)va_arg(ap, uint32_t);
radix = 2;
vstrp = &vstr[vlen];
}
if (c == 'p')
{
uval = (uint32_t)va_arg(ap, void *);
radix = 16;
vstrp = &vstr[vlen];
}
if (c == 'u')
{
uval = (uint32_t)va_arg(ap, uint32_t);
radix = 10;
vstrp = &vstr[vlen];
}
if ((c == 'o') || (c == 'b') || (c == 'p') || (c == 'u'))
{
vlen = DbgConsole_ConvertRadixNumToString(vstr, &uval, false, radix, use_caps);
vstrp = &vstr[vlen];
#if PRINTF_ADVANCED_ENABLE
if (flags_used & kPRINTF_Zero)
{
DbgConsole_PrintfPaddingCharacter('0', vlen, field_width, &count, func_ptr);
vlen = field_width;
}
else
{
if (!(flags_used & kPRINTF_Minus))
{
DbgConsole_PrintfPaddingCharacter(' ', vlen, field_width, &count, func_ptr);
}
}
#endif /* PRINTF_ADVANCED_ENABLE */
}
#if !PRINTF_ADVANCED_ENABLE
DbgConsole_PrintfPaddingCharacter(' ', vlen, field_width, &count, func_ptr);
#endif /* !PRINTF_ADVANCED_ENABLE */
while (*vstrp)
{
func_ptr(*vstrp--);
count++;
}
#if PRINTF_ADVANCED_ENABLE
if (flags_used & kPRINTF_Minus)
{
DbgConsole_PrintfPaddingCharacter(' ', vlen, field_width, &count, func_ptr);
}
#endif /* PRINTF_ADVANCED_ENABLE */
}
else if (c == 'c')
{
cval = (char)va_arg(ap, uint32_t);
func_ptr(cval);
count++;
}
else if (c == 's')
{
sval = (char *)va_arg(ap, char *);
if (sval)
{
vlen = strlen(sval);
#if PRINTF_ADVANCED_ENABLE
if (!(flags_used & kPRINTF_Minus))
#endif /* PRINTF_ADVANCED_ENABLE */
{
DbgConsole_PrintfPaddingCharacter(' ', vlen, field_width, &count, func_ptr);
}
while (*sval)
{
func_ptr(*sval++);
count++;
}
#if PRINTF_ADVANCED_ENABLE
if (flags_used & kPRINTF_Minus)
{
DbgConsole_PrintfPaddingCharacter(' ', vlen, field_width, &count, func_ptr);
}
#endif /* PRINTF_ADVANCED_ENABLE */
}
}
else
{
func_ptr(c);
count++;
}
}
}
return count;
}
/*!
* @brief Converts an input line of ASCII characters based upon a provided
* string format.
*
* @param[in] line_ptr The input line of ASCII data.
* @param[in] format Format first points to the format string.
* @param[in] args_ptr The list of parameters.
*
* @return Number of input items converted and assigned.
* @retval IO_EOF When line_ptr is empty string "".
*/
static int DbgConsole_ScanfFormattedData(const char *line_ptr, char *format, va_list args_ptr)
{
uint8_t base;
int8_t neg;
/* Identifier for the format string. */
char *c = format;
char temp;
char *buf;
/* Flag telling the conversion specification. */
uint32_t flag = 0;
/* Filed width for the matching input streams. */
uint32_t field_width;
/* How many arguments are assigned except the suppress. */
uint32_t nassigned = 0;
/* How many characters are read from the input streams. */
uint32_t n_decode = 0;
int32_t val;
const char *s;
/* Identifier for the input string. */
const char *p = line_ptr;
/* Return EOF error before any conversion. */
if (*p == '\0')
{
return -1;
}
/* Decode directives. */
while ((*c) && (*p))
{
/* Ignore all white-spaces in the format strings. */
if (DbgConsole_ScanIgnoreWhiteSpace((const char **)&c))
{
n_decode += DbgConsole_ScanIgnoreWhiteSpace(&p);
}
else if ((*c != '%') || ((*c == '%') && (*(c + 1) == '%')))
{
/* Ordinary characters. */
c++;
if (*p == *c)
{
n_decode++;
p++;
c++;
}
else
{
/* Match failure. Misalignment with C99, the unmatched characters need to be pushed back to stream.
* However, it is deserted now. */
break;
}
}
else
{
/* convernsion specification */
c++;
/* Reset. */
flag = 0;
field_width = 0;
base = 0;
/* Loop to get full conversion specification. */
while ((*c) && (!(flag & kSCANF_DestMask)))
{
switch (*c)
{
#if SCANF_ADVANCED_ENABLE
case '*':
if (flag & kSCANF_Suppress)
{
/* Match failure. */
return nassigned;
}
flag |= kSCANF_Suppress;
c++;
break;
case 'h':
if (flag & kSCANF_LengthMask)
{
/* Match failure. */
return nassigned;
}
if (c[1] == 'h')
{
flag |= kSCANF_LengthChar;
c++;
}
else
{
flag |= kSCANF_LengthShortInt;
}
c++;
break;
case 'l':
if (flag & kSCANF_LengthMask)
{
/* Match failure. */
return nassigned;
}
if (c[1] == 'l')
{
flag |= kSCANF_LengthLongLongInt;
c++;
}
else
{
flag |= kSCANF_LengthLongInt;
}
c++;
break;
#endif /* SCANF_ADVANCED_ENABLE */
#if SCANF_FLOAT_ENABLE
case 'L':
if (flag & kSCANF_LengthMask)
{
/* Match failure. */
return nassigned;
}
flag |= kSCANF_LengthLongLongDouble;
c++;
break;
#endif /* SCANF_FLOAT_ENABLE */
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
if (field_width)
{
/* Match failure. */
return nassigned;
}
do
{
field_width = field_width * 10 + *c - '0';
c++;
} while ((*c >= '0') && (*c <= '9'));
break;
case 'd':
base = 10;
flag |= kSCANF_TypeSinged;
flag |= kSCANF_DestInt;
c++;
break;
case 'u':
base = 10;
flag |= kSCANF_DestInt;
c++;
break;
case 'o':
base = 8;
flag |= kSCANF_DestInt;
c++;
break;
case 'x':
case 'X':
base = 16;
flag |= kSCANF_DestInt;
c++;
break;
case 'i':
base = 0;
flag |= kSCANF_DestInt;
c++;
break;
#if SCANF_FLOAT_ENABLE
case 'a':
case 'A':
case 'e':
case 'E':
case 'f':
case 'F':
case 'g':
case 'G':
flag |= kSCANF_DestFloat;
c++;
break;
#endif /* SCANF_FLOAT_ENABLE */
case 'c':
flag |= kSCANF_DestChar;
if (!field_width)
{
field_width = 1;
}
c++;
break;
case 's':
flag |= kSCANF_DestString;
c++;
break;
default:
return nassigned;
}
}
if (!(flag & kSCANF_DestMask))
{
/* Format strings are exhausted. */
return nassigned;
}
if (!field_width)
{
/* Large than length of a line. */
field_width = 99;
}
/* Matching strings in input streams and assign to argument. */
switch (flag & kSCANF_DestMask)
{
case kSCANF_DestChar:
s = (const char *)p;
buf = va_arg(args_ptr, char *);
while ((field_width--) && (*p))
{
if (!(flag & kSCANF_Suppress))
{
*buf++ = *p++;
}
else
{
p++;
}
n_decode++;
}
if (((!(flag)) & kSCANF_Suppress) && (s != p))
{
nassigned++;
}
break;
case kSCANF_DestString:
n_decode += DbgConsole_ScanIgnoreWhiteSpace(&p);
s = p;
buf = va_arg(args_ptr, char *);
while ((field_width--) && (*p != '\0') && (*p != ' ') && (*p != '\t') && (*p != '\n') &&
(*p != '\r') && (*p != '\v') && (*p != '\f'))
{
if (flag & kSCANF_Suppress)
{
p++;
}
else
{
*buf++ = *p++;
}
n_decode++;
}
if ((!(flag & kSCANF_Suppress)) && (s != p))
{
/* Add NULL to end of string. */
*buf = '\0';
nassigned++;
}
break;
case kSCANF_DestInt:
n_decode += DbgConsole_ScanIgnoreWhiteSpace(&p);
s = p;
val = 0;
if ((base == 0) || (base == 16))
{
if ((s[0] == '0') && ((s[1] == 'x') || (s[1] == 'X')))
{
base = 16;
if (field_width >= 1)
{
p += 2;
n_decode += 2;
field_width -= 2;
}
}
}
if (base == 0)
{
if (s[0] == '0')
{
base = 8;
}
else
{
base = 10;
}
}
neg = 1;
switch (*p)
{
case '-':
neg = -1;
n_decode++;
p++;
field_width--;
break;
case '+':
neg = 1;
n_decode++;
p++;
field_width--;
break;
default:
break;
}
while ((*p) && (field_width--))
{
if ((*p <= '9') && (*p >= '0'))
{
temp = *p - '0';
}
else if ((*p <= 'f') && (*p >= 'a'))
{
temp = *p - 'a' + 10;
}
else if ((*p <= 'F') && (*p >= 'A'))
{
temp = *p - 'A' + 10;
}
else
{
temp = base;
}
if (temp >= base)
{
break;
}
else
{
val = base * val + temp;
}
p++;
n_decode++;
}
val *= neg;
if (!(flag & kSCANF_Suppress))
{
#if SCANF_ADVANCED_ENABLE
switch (flag & kSCANF_LengthMask)
{
case kSCANF_LengthChar:
if (flag & kSCANF_TypeSinged)
{
*va_arg(args_ptr, signed char *) = (signed char)val;
}
else
{
*va_arg(args_ptr, unsigned char *) = (unsigned char)val;
}
break;
case kSCANF_LengthShortInt:
if (flag & kSCANF_TypeSinged)
{
*va_arg(args_ptr, signed short *) = (signed short)val;
}
else
{
*va_arg(args_ptr, unsigned short *) = (unsigned short)val;
}
break;
case kSCANF_LengthLongInt:
if (flag & kSCANF_TypeSinged)
{
*va_arg(args_ptr, signed long int *) = (signed long int)val;
}
else
{
*va_arg(args_ptr, unsigned long int *) = (unsigned long int)val;
}
break;
case kSCANF_LengthLongLongInt:
if (flag & kSCANF_TypeSinged)
{
*va_arg(args_ptr, signed long long int *) = (signed long long int)val;
}
else
{
*va_arg(args_ptr, unsigned long long int *) = (unsigned long long int)val;
}
break;
default:
/* The default type is the type int. */
if (flag & kSCANF_TypeSinged)
{
*va_arg(args_ptr, signed int *) = (signed int)val;
}
else
{
*va_arg(args_ptr, unsigned int *) = (unsigned int)val;
}
break;
}
#else
/* The default type is the type int. */
if (flag & kSCANF_TypeSinged)
{
*va_arg(args_ptr, signed int *) = (signed int)val;
}
else
{
*va_arg(args_ptr, unsigned int *) = (unsigned int)val;
}
#endif /* SCANF_ADVANCED_ENABLE */
nassigned++;
}
break;
#if SCANF_FLOAT_ENABLE
case kSCANF_DestFloat:
n_decode += DbgConsole_ScanIgnoreWhiteSpace(&p);
fnum = strtod(p, (char **)&s);
if ((fnum >= HUGE_VAL) || (fnum <= -HUGE_VAL))
{
break;
}
n_decode += (int)(s) - (int)(p);
p = s;
if (!(flag & kSCANF_Suppress))
{
if (flag & kSCANF_LengthLongLongDouble)
{
*va_arg(args_ptr, double *) = fnum;
}
else
{
*va_arg(args_ptr, float *) = (float)fnum;
}
nassigned++;
}
break;
#endif /* SCANF_FLOAT_ENABLE */
default:
return nassigned;
}
}
}
return nassigned;
}
#endif /* SDK_DEBUGCONSOLE */
/*************Code to support toolchain's printf, scanf *******************************/
/* These function __write and __read is used to support IAR toolchain to printf and scanf*/
#if (defined(__ICCARM__))
#pragma weak __write
size_t __write(int handle, const unsigned char *buffer, size_t size)
{
if (buffer == 0)
{
/*
* This means that we should flush internal buffers. Since we don't we just return.
* (Remember, "handle" == -1 means that all handles should be flushed.)
*/
return 0;
}
/* This function only writes to "standard out" and "standard err" for all other file handles it returns failure. */
if ((handle != 1) && (handle != 2))
{
return ((size_t)-1);
}
/* Do nothing if the debug UART is not initialized. */
if (s_debugConsole.type == DEBUG_CONSOLE_DEVICE_TYPE_NONE)
{
return ((size_t)-1);
}
/* Send data. */
s_debugConsole.ops.tx_union.PutChar(s_debugConsole.base, buffer, 1);
return size;
}
#pragma weak __read
size_t __read(int handle, unsigned char *buffer, size_t size)
{
/* This function only reads from "standard in", for all other file handles it returns failure. */
if (handle != 0)
{
return ((size_t)-1);
}
/* Do nothing if the debug UART is not initialized. */
if (s_debugConsole.type == DEBUG_CONSOLE_DEVICE_TYPE_NONE)
{
return ((size_t)-1);
}
/* Receive data. */
s_debugConsole.ops.rx_union.GetChar(s_debugConsole.base, buffer, size);
return size;
}
/* These function __write and __read is used to support ARM_GCC, KDS, Atollic toolchains to printf and scanf*/
#elif(defined(__GNUC__))
int _write(int handle, char *buffer, int size)
{
if (buffer == 0)
{
/* return -1 if error. */
return -1;
}
/* This function only writes to "standard out" and "standard err" for all other file handles it returns failure. */
if ((handle != 1) && (handle != 2))
{
return -1;
}
/* Do nothing if the debug UART is not initialized. */
if (s_debugConsole.type == DEBUG_CONSOLE_DEVICE_TYPE_NONE)
{
return -1;
}
/* Send data. */
s_debugConsole.ops.tx_union.PutChar(s_debugConsole.base, (uint8_t *)buffer, size);
return size;
}
int _read(int handle, char *buffer, int size)
{
/* This function only reads from "standard in", for all other file handles it returns failure. */
if (handle != 0)
{
return -1;
}
/* Do nothing if the debug UART is not initialized. */
if (s_debugConsole.type == DEBUG_CONSOLE_DEVICE_TYPE_NONE)
{
return -1;
}
/* Receive data. */
s_debugConsole.ops.rx_union.GetChar(s_debugConsole.base, (uint8_t *)buffer, size);
return size;
}
/* These function fputc and fgetc is used to support KEIL toolchain to printf and scanf*/
#elif defined(__CC_ARM)
struct __FILE
{
int handle;
/*
* Whatever you require here. If the only file you are using is standard output using printf() for debugging,
* no file handling is required.
*/
};
/* FILE is typedef in stdio.h. */
#pragma weak __stdout
FILE __stdout;
FILE __stdin;
#pragma weak fputc
int fputc(int ch, FILE *f)
{
/* Do nothing if the debug UART is not initialized. */
if (s_debugConsole.type == DEBUG_CONSOLE_DEVICE_TYPE_NONE)
{
return -1;
}
/* Send data. */
s_debugConsole.ops.tx_union.PutChar(s_debugConsole.base, (uint8_t *)(&ch), 1);
return 1;
}
#pragma weak fgetc
int fgetc(FILE *f)
{
char ch;
/* Do nothing if the debug UART is not initialized. */
if (s_debugConsole.type == DEBUG_CONSOLE_DEVICE_TYPE_NONE)
{
return -1;
}
/* Receive data. */
s_debugConsole.ops.rx_union.GetChar(s_debugConsole.base, (uint8_t *)(&ch), 1);
return ch;
}
#endif /* __ICCARM__ */