blob: e7fe76151a4ac832e87f1f8d7a753c4665942a7e [file] [log] [blame]
/**
* Copyright (c) 2015 - 2018, Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <nrfx.h>
#if NRFX_CHECK(NRFX_SPIM_ENABLED)
#if !(NRFX_CHECK(NRFX_SPIM0_ENABLED) || NRFX_CHECK(NRFX_SPIM1_ENABLED) || \
NRFX_CHECK(NRFX_SPIM2_ENABLED) || NRFX_CHECK(NRFX_SPIM3_ENABLED))
#error "No enabled SPIM instances. Check <nrfx_config.h>."
#endif
#if NRFX_CHECK(NRFX_SPIM_EXTENDED_ENABLED) && !NRFX_CHECK(NRFX_SPIM3_ENABLED)
#error "Extended options are available only in SPIM3 on the nRF52840 SoC."
#endif
#include <nrfx_spim.h>
#include "prs/nrfx_prs.h"
#include <hal/nrf_gpio.h>
#define NRFX_LOG_MODULE SPIM
#include <nrfx_log.h>
#define SPIMX_LENGTH_VALIDATE(peripheral, drv_inst_idx, rx_len, tx_len) \
(((drv_inst_idx) == NRFX_CONCAT_3(NRFX_, peripheral, _INST_IDX)) && \
NRFX_EASYDMA_LENGTH_VALIDATE(peripheral, rx_len, tx_len))
#if NRFX_CHECK(NRFX_SPIM0_ENABLED)
#define SPIM0_LENGTH_VALIDATE(...) SPIMX_LENGTH_VALIDATE(SPIM0, __VA_ARGS__)
#else
#define SPIM0_LENGTH_VALIDATE(...) 0
#endif
#if NRFX_CHECK(NRFX_SPIM1_ENABLED)
#define SPIM1_LENGTH_VALIDATE(...) SPIMX_LENGTH_VALIDATE(SPIM1, __VA_ARGS__)
#else
#define SPIM1_LENGTH_VALIDATE(...) 0
#endif
#if NRFX_CHECK(NRFX_SPIM2_ENABLED)
#define SPIM2_LENGTH_VALIDATE(...) SPIMX_LENGTH_VALIDATE(SPIM2, __VA_ARGS__)
#else
#define SPIM2_LENGTH_VALIDATE(...) 0
#endif
#if NRFX_CHECK(NRFX_SPIM3_ENABLED)
#define SPIM3_LENGTH_VALIDATE(...) SPIMX_LENGTH_VALIDATE(SPIM3, __VA_ARGS__)
#else
#define SPIM3_LENGTH_VALIDATE(...) 0
#endif
#define SPIM_LENGTH_VALIDATE(drv_inst_idx, rx_len, tx_len) \
(SPIM0_LENGTH_VALIDATE(drv_inst_idx, rx_len, tx_len) || \
SPIM1_LENGTH_VALIDATE(drv_inst_idx, rx_len, tx_len) || \
SPIM2_LENGTH_VALIDATE(drv_inst_idx, rx_len, tx_len) || \
SPIM3_LENGTH_VALIDATE(drv_inst_idx, rx_len, tx_len))
// Control block - driver instance local data.
typedef struct
{
nrfx_spim_evt_handler_t handler;
void * p_context;
nrfx_spim_evt_t evt; // Keep the struct that is ready for event handler. Less memcpy.
nrfx_drv_state_t state;
volatile bool transfer_in_progress;
#if NRFX_CHECK(NRFX_SPIM_EXTENDED_ENABLED)
bool use_hw_ss;
#endif
// [no need for 'volatile' attribute for the following members, as they
// are not concurrently used in IRQ handlers and main line code]
bool ss_active_high;
uint8_t ss_pin;
uint8_t miso_pin;
uint8_t orc;
#if NRFX_CHECK(NRFX_SPIM_NRF52_ANOMALY_109_WORKAROUND_ENABLED)
size_t tx_length;
size_t rx_length;
#endif
} spim_control_block_t;
static spim_control_block_t m_cb[NRFX_SPIM_ENABLED_COUNT];
#if NRFX_CHECK(NRFX_SPIM3_NRF52840_ANOMALY_198_WORKAROUND_ENABLED)
// Workaround for nRF52840 anomaly 198: SPIM3 transmit data might be corrupted.
static uint32_t m_anomaly_198_preserved_value;
static void anomaly_198_enable(uint8_t const * p_buffer, size_t buf_len)
{
m_anomaly_198_preserved_value = *((volatile uint32_t *)0x40000E00);
if (buf_len == 0)
{
return;
}
uint32_t buffer_end_addr = ((uint32_t)p_buffer) + buf_len;
uint32_t block_addr = ((uint32_t)p_buffer) & ~0x1FFF;
uint32_t block_flag = (1UL << ((block_addr >> 13) & 0xFFFF));
uint32_t occupied_blocks = 0;
if (block_addr >= 0x20010000)
{
occupied_blocks = (1UL << 8);
}
else
{
do {
occupied_blocks |= block_flag;
block_flag <<= 1;
block_addr += 0x2000;
} while ((block_addr < buffer_end_addr) && (block_addr < 0x20012000));
}
*((volatile uint32_t *)0x40000E00) = occupied_blocks;
}
static void anomaly_198_disable(void)
{
*((volatile uint32_t *)0x40000E00) = m_anomaly_198_preserved_value;
}
#endif // NRFX_CHECK(NRFX_SPIM3_NRF52840_ANOMALY_198_WORKAROUND_ENABLED)
nrfx_err_t nrfx_spim_init(nrfx_spim_t const * const p_instance,
nrfx_spim_config_t const * p_config,
nrfx_spim_evt_handler_t handler,
void * p_context)
{
NRFX_ASSERT(p_config);
spim_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
nrfx_err_t err_code;
if (p_cb->state != NRFX_DRV_STATE_UNINITIALIZED)
{
err_code = NRFX_ERROR_INVALID_STATE;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
#if NRFX_CHECK(NRFX_SPIM_EXTENDED_ENABLED)
// Currently, only SPIM3 in nRF52840 supports the extended features. Other instances must be checked.
if ((p_instance->drv_inst_idx != NRFX_SPIM3_INST_IDX) &&
((p_config->dcx_pin != NRFX_SPIM_PIN_NOT_USED) ||
(p_config->frequency == NRF_SPIM_FREQ_16M) ||
(p_config->frequency == NRF_SPIM_FREQ_32M) ||
(p_config->rx_delay != 0x00) ||
(p_config->use_hw_ss)))
{
err_code = NRFX_ERROR_NOT_SUPPORTED;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
#endif
NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_reg;
#if NRFX_CHECK(NRFX_PRS_ENABLED)
static nrfx_irq_handler_t const irq_handlers[NRFX_SPIM_ENABLED_COUNT] = {
#if NRFX_CHECK(NRFX_SPIM0_ENABLED)
nrfx_spim_0_irq_handler,
#endif
#if NRFX_CHECK(NRFX_SPIM1_ENABLED)
nrfx_spim_1_irq_handler,
#endif
#if NRFX_CHECK(NRFX_SPIM2_ENABLED)
nrfx_spim_2_irq_handler,
#endif
#if NRFX_CHECK(NRFX_SPIM3_ENABLED)
nrfx_spim_3_irq_handler,
#endif
};
if (nrfx_prs_acquire(p_instance->p_reg,
irq_handlers[p_instance->drv_inst_idx]) != NRFX_SUCCESS)
{
err_code = NRFX_ERROR_BUSY;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
#endif // NRFX_CHECK(NRFX_PRS_ENABLED)
p_cb->handler = handler;
p_cb->p_context = p_context;
uint32_t mosi_pin;
uint32_t miso_pin;
// Configure pins used by the peripheral:
// - SCK - output with initial value corresponding with the SPI mode used:
// 0 - for modes 0 and 1 (CPOL = 0), 1 - for modes 2 and 3 (CPOL = 1);
// according to the reference manual guidelines this pin and its input
// buffer must always be connected for the SPI to work.
if (p_config->mode <= NRF_SPIM_MODE_1)
{
nrf_gpio_pin_clear(p_config->sck_pin);
}
else
{
nrf_gpio_pin_set(p_config->sck_pin);
}
nrf_gpio_cfg(p_config->sck_pin,
NRF_GPIO_PIN_DIR_OUTPUT,
NRF_GPIO_PIN_INPUT_CONNECT,
NRF_GPIO_PIN_NOPULL,
NRF_GPIO_PIN_S0S1,
NRF_GPIO_PIN_NOSENSE);
// - MOSI (optional) - output with initial value 0,
if (p_config->mosi_pin != NRFX_SPIM_PIN_NOT_USED)
{
mosi_pin = p_config->mosi_pin;
nrf_gpio_pin_clear(mosi_pin);
nrf_gpio_cfg_output(mosi_pin);
}
else
{
mosi_pin = NRF_SPIM_PIN_NOT_CONNECTED;
}
// - MISO (optional) - input,
if (p_config->miso_pin != NRFX_SPIM_PIN_NOT_USED)
{
miso_pin = p_config->miso_pin;
nrf_gpio_cfg_input(miso_pin, (nrf_gpio_pin_pull_t)NRFX_SPIM_MISO_PULL_CFG);
}
else
{
miso_pin = NRF_SPIM_PIN_NOT_CONNECTED;
}
m_cb[p_instance->drv_inst_idx].miso_pin = p_config->miso_pin;
// - Slave Select (optional) - output with initial value 1 (inactive).
if (p_config->ss_pin != NRFX_SPIM_PIN_NOT_USED)
{
if (p_config->ss_active_high)
{
nrf_gpio_pin_clear(p_config->ss_pin);
}
else
{
nrf_gpio_pin_set(p_config->ss_pin);
}
nrf_gpio_cfg_output(p_config->ss_pin);
#if NRFX_CHECK(NRFX_SPIM_EXTENDED_ENABLED)
if (p_config->use_hw_ss)
{
m_cb[p_instance->drv_inst_idx].use_hw_ss = p_config->use_hw_ss;
nrf_spim_csn_configure(p_spim,
p_config->ss_pin,
(p_config->ss_active_high == true ?
NRF_SPIM_CSN_POL_HIGH : NRF_SPIM_CSN_POL_LOW),
p_config->ss_duration);
}
#endif
m_cb[p_instance->drv_inst_idx].ss_pin = p_config->ss_pin;
m_cb[p_instance->drv_inst_idx].ss_active_high = p_config->ss_active_high;
}
#if NRFX_CHECK(NRFX_SPIM_EXTENDED_ENABLED)
// - DCX (optional) - output.
if (p_config->dcx_pin != NRFX_SPIM_PIN_NOT_USED)
{
nrf_gpio_pin_set(p_config->dcx_pin);
nrf_gpio_cfg_output(p_config->dcx_pin);
nrf_spim_dcx_pin_set(p_spim, p_config->dcx_pin);
}
// Change rx delay
nrf_spim_iftiming_set(p_spim, p_config->rx_delay);
#endif
nrf_spim_pins_set(p_spim, p_config->sck_pin, mosi_pin, miso_pin);
nrf_spim_frequency_set(p_spim, p_config->frequency);
nrf_spim_configure(p_spim, p_config->mode, p_config->bit_order);
nrf_spim_orc_set(p_spim, p_config->orc);
if (p_cb->handler)
{
nrf_spim_int_enable(p_spim, NRF_SPIM_INT_END_MASK);
}
nrf_spim_enable(p_spim);
if (p_cb->handler)
{
NRFX_IRQ_PRIORITY_SET(nrfx_get_irq_number(p_instance->p_reg),
p_config->irq_priority);
NRFX_IRQ_ENABLE(nrfx_get_irq_number(p_instance->p_reg));
}
p_cb->transfer_in_progress = false;
p_cb->state = NRFX_DRV_STATE_INITIALIZED;
err_code = NRFX_SUCCESS;
NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
void nrfx_spim_uninit(nrfx_spim_t const * const p_instance)
{
spim_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
NRFX_ASSERT(p_cb->state != NRFX_DRV_STATE_UNINITIALIZED);
if (p_cb->handler)
{
NRFX_IRQ_DISABLE(nrfx_get_irq_number(p_instance->p_reg));
}
NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_reg;
if (p_cb->handler)
{
nrf_spim_int_disable(p_spim, NRF_SPIM_ALL_INTS_MASK);
if (p_cb->transfer_in_progress)
{
// Ensure that SPI is not performing any transfer.
nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_STOP);
while (!nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_STOPPED))
{}
p_cb->transfer_in_progress = false;
}
}
if (p_cb->miso_pin != NRFX_SPIM_PIN_NOT_USED)
{
nrf_gpio_cfg_default(p_cb->miso_pin);
}
nrf_spim_disable(p_spim);
#if NRFX_CHECK(NRFX_PRS_ENABLED)
nrfx_prs_release(p_instance->p_reg);
#endif
p_cb->state = NRFX_DRV_STATE_UNINITIALIZED;
}
#if NRFX_CHECK(NRFX_SPIM_EXTENDED_ENABLED)
nrfx_err_t nrfx_spim_xfer_dcx(nrfx_spim_t const * const p_instance,
nrfx_spim_xfer_desc_t const * p_xfer_desc,
uint32_t flags,
uint8_t cmd_length)
{
NRFX_ASSERT(cmd_length <= NRF_SPIM_DCX_CNT_ALL_CMD);
nrf_spim_dcx_cnt_set((NRF_SPIM_Type *)p_instance->p_reg, cmd_length);
return nrfx_spim_xfer(p_instance, p_xfer_desc, 0);
}
#endif
static void finish_transfer(spim_control_block_t * p_cb)
{
// If Slave Select signal is used, this is the time to deactivate it.
if (p_cb->ss_pin != NRFX_SPIM_PIN_NOT_USED)
{
#if NRFX_CHECK(NRFX_SPIM_EXTENDED_ENABLED)
if (!p_cb->use_hw_ss)
#endif
{
if (p_cb->ss_active_high)
{
nrf_gpio_pin_clear(p_cb->ss_pin);
}
else
{
nrf_gpio_pin_set(p_cb->ss_pin);
}
}
}
// By clearing this flag before calling the handler we allow subsequent
// transfers to be started directly from the handler function.
p_cb->transfer_in_progress = false;
p_cb->evt.type = NRFX_SPIM_EVENT_DONE;
p_cb->handler(&p_cb->evt, p_cb->p_context);
}
__STATIC_INLINE void spim_int_enable(NRF_SPIM_Type * p_spim, bool enable)
{
if (!enable)
{
nrf_spim_int_disable(p_spim, NRF_SPIM_INT_END_MASK);
}
else
{
nrf_spim_int_enable(p_spim, NRF_SPIM_INT_END_MASK);
}
}
__STATIC_INLINE void spim_list_enable_handle(NRF_SPIM_Type * p_spim, uint32_t flags)
{
if (NRFX_SPIM_FLAG_TX_POSTINC & flags)
{
nrf_spim_tx_list_enable(p_spim);
}
else
{
nrf_spim_tx_list_disable(p_spim);
}
if (NRFX_SPIM_FLAG_RX_POSTINC & flags)
{
nrf_spim_rx_list_enable(p_spim);
}
else
{
nrf_spim_rx_list_disable(p_spim);
}
}
static nrfx_err_t spim_xfer(NRF_SPIM_Type * p_spim,
spim_control_block_t * p_cb,
nrfx_spim_xfer_desc_t const * p_xfer_desc,
uint32_t flags)
{
nrfx_err_t err_code;
// EasyDMA requires that transfer buffers are placed in Data RAM region;
// signal error if they are not.
if ((p_xfer_desc->p_tx_buffer != NULL && !nrfx_is_in_ram(p_xfer_desc->p_tx_buffer)) ||
(p_xfer_desc->p_rx_buffer != NULL && !nrfx_is_in_ram(p_xfer_desc->p_rx_buffer)))
{
p_cb->transfer_in_progress = false;
err_code = NRFX_ERROR_INVALID_ADDR;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
#if NRFX_CHECK(NRFX_SPIM_NRF52_ANOMALY_109_WORKAROUND_ENABLED)
p_cb->tx_length = 0;
p_cb->rx_length = 0;
#endif
nrf_spim_tx_buffer_set(p_spim, p_xfer_desc->p_tx_buffer, p_xfer_desc->tx_length);
nrf_spim_rx_buffer_set(p_spim, p_xfer_desc->p_rx_buffer, p_xfer_desc->rx_length);
#if NRFX_CHECK(NRFX_SPIM3_NRF52840_ANOMALY_198_WORKAROUND_ENABLED)
if (p_spim == NRF_SPIM3)
{
anomaly_198_enable(p_xfer_desc->p_tx_buffer, p_xfer_desc->tx_length);
}
#endif
nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END);
spim_list_enable_handle(p_spim, flags);
if (!(flags & NRFX_SPIM_FLAG_HOLD_XFER))
{
nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_START);
}
#if NRFX_CHECK(NRFX_SPIM_NRF52_ANOMALY_109_WORKAROUND_ENABLED)
if (flags & NRFX_SPIM_FLAG_HOLD_XFER)
{
nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_STARTED);
p_cb->tx_length = p_xfer_desc->tx_length;
p_cb->rx_length = p_xfer_desc->rx_length;
nrf_spim_tx_buffer_set(p_spim, p_xfer_desc->p_tx_buffer, 0);
nrf_spim_rx_buffer_set(p_spim, p_xfer_desc->p_rx_buffer, 0);
nrf_spim_int_enable(p_spim, NRF_SPIM_INT_STARTED_MASK);
}
#endif
if (!p_cb->handler)
{
while (!nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_END)){}
#if NRFX_CHECK(NRFX_SPIM3_NRF52840_ANOMALY_198_WORKAROUND_ENABLED)
if (p_spim == NRF_SPIM3)
{
anomaly_198_disable();
}
#endif
if (p_cb->ss_pin != NRFX_SPIM_PIN_NOT_USED)
{
#if NRFX_CHECK(NRFX_SPIM_EXTENDED_ENABLED)
if (!p_cb->use_hw_ss)
#endif
{
if (p_cb->ss_active_high)
{
nrf_gpio_pin_clear(p_cb->ss_pin);
}
else
{
nrf_gpio_pin_set(p_cb->ss_pin);
}
}
}
}
else
{
spim_int_enable(p_spim, !(flags & NRFX_SPIM_FLAG_NO_XFER_EVT_HANDLER));
}
err_code = NRFX_SUCCESS;
NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
nrfx_err_t nrfx_spim_xfer(nrfx_spim_t const * const p_instance,
nrfx_spim_xfer_desc_t const * p_xfer_desc,
uint32_t flags)
{
spim_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
NRFX_ASSERT(p_cb->state != NRFX_DRV_STATE_UNINITIALIZED);
NRFX_ASSERT(p_xfer_desc->p_tx_buffer != NULL || p_xfer_desc->tx_length == 0);
NRFX_ASSERT(p_xfer_desc->p_rx_buffer != NULL || p_xfer_desc->rx_length == 0);
NRFX_ASSERT(SPIM_LENGTH_VALIDATE(p_instance->drv_inst_idx,
p_xfer_desc->rx_length,
p_xfer_desc->tx_length));
nrfx_err_t err_code = NRFX_SUCCESS;
if (p_cb->transfer_in_progress)
{
err_code = NRFX_ERROR_BUSY;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
else
{
if (p_cb->handler && !(flags & (NRFX_SPIM_FLAG_REPEATED_XFER |
NRFX_SPIM_FLAG_NO_XFER_EVT_HANDLER)))
{
p_cb->transfer_in_progress = true;
}
}
p_cb->evt.xfer_desc = *p_xfer_desc;
if (p_cb->ss_pin != NRFX_SPIM_PIN_NOT_USED)
{
#if NRFX_CHECK(NRFX_SPIM_EXTENDED_ENABLED)
if (!p_cb->use_hw_ss)
#endif
{
if (p_cb->ss_active_high)
{
nrf_gpio_pin_set(p_cb->ss_pin);
}
else
{
nrf_gpio_pin_clear(p_cb->ss_pin);
}
}
}
return spim_xfer(p_instance->p_reg, p_cb, p_xfer_desc, flags);
}
void nrfx_spim_abort(nrfx_spim_t const * p_instance)
{
spim_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
NRFX_ASSERT(p_cb->state != NRFX_DRV_STATE_UNINITIALIZED);
nrf_spim_task_trigger(p_instance->p_reg, NRF_SPIM_TASK_STOP);
while (!nrf_spim_event_check(p_instance->p_reg, NRF_SPIM_EVENT_STOPPED))
{}
p_cb->transfer_in_progress = false;
}
uint32_t nrfx_spim_start_task_get(nrfx_spim_t const * p_instance)
{
NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_reg;
return nrf_spim_task_address_get(p_spim, NRF_SPIM_TASK_START);
}
uint32_t nrfx_spim_end_event_get(nrfx_spim_t const * p_instance)
{
NRF_SPIM_Type * p_spim = (NRF_SPIM_Type *)p_instance->p_reg;
return nrf_spim_event_address_get(p_spim, NRF_SPIM_EVENT_END);
}
static void irq_handler(NRF_SPIM_Type * p_spim, spim_control_block_t * p_cb)
{
#if NRFX_CHECK(NRFX_SPIM_NRF52_ANOMALY_109_WORKAROUND_ENABLED)
if ((nrf_spim_int_enable_check(p_spim, NRF_SPIM_INT_STARTED_MASK)) &&
(nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_STARTED)) )
{
/* Handle first, zero-length, auxiliary transmission. */
nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_STARTED);
nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END);
NRFX_ASSERT(p_spim->TXD.MAXCNT == 0);
p_spim->TXD.MAXCNT = p_cb->tx_length;
NRFX_ASSERT(p_spim->RXD.MAXCNT == 0);
p_spim->RXD.MAXCNT = p_cb->rx_length;
/* Disable STARTED interrupt, used only in auxiliary transmission. */
nrf_spim_int_disable(p_spim, NRF_SPIM_INT_STARTED_MASK);
/* Start the actual, glitch-free transmission. */
nrf_spim_task_trigger(p_spim, NRF_SPIM_TASK_START);
return;
}
#endif
if (nrf_spim_event_check(p_spim, NRF_SPIM_EVENT_END))
{
#if NRFX_CHECK(NRFX_SPIM3_NRF52840_ANOMALY_198_WORKAROUND_ENABLED)
if (p_spim == NRF_SPIM3)
{
anomaly_198_disable();
}
#endif
nrf_spim_event_clear(p_spim, NRF_SPIM_EVENT_END);
NRFX_ASSERT(p_cb->handler);
NRFX_LOG_DEBUG("Event: NRF_SPIM_EVENT_END.");
finish_transfer(p_cb);
}
}
#if NRFX_CHECK(NRFX_SPIM0_ENABLED)
void nrfx_spim_0_irq_handler(void)
{
irq_handler(NRF_SPIM0, &m_cb[NRFX_SPIM0_INST_IDX]);
}
#endif
#if NRFX_CHECK(NRFX_SPIM1_ENABLED)
void nrfx_spim_1_irq_handler(void)
{
irq_handler(NRF_SPIM1, &m_cb[NRFX_SPIM1_INST_IDX]);
}
#endif
#if NRFX_CHECK(NRFX_SPIM2_ENABLED)
void nrfx_spim_2_irq_handler(void)
{
irq_handler(NRF_SPIM2, &m_cb[NRFX_SPIM2_INST_IDX]);
}
#endif
#if NRFX_CHECK(NRFX_SPIM3_ENABLED)
void nrfx_spim_3_irq_handler(void)
{
irq_handler(NRF_SPIM3, &m_cb[NRFX_SPIM3_INST_IDX]);
}
#endif
#endif // NRFX_CHECK(NRFX_SPIM_ENABLED)