blob: 99d29f6bbd8b3be7d452124d6d2fdb45d7ce9a59 [file] [log] [blame]
/**
* Copyright (c) 2015 - 2018, Nordic Semiconductor ASA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <nrfx.h>
#if NRFX_CHECK(NRFX_SPI_ENABLED)
#if !(NRFX_CHECK(NRFX_SPI0_ENABLED) || NRFX_CHECK(NRFX_SPI1_ENABLED) || \
NRFX_CHECK(NRFX_SPI2_ENABLED))
#error "No enabled SPI instances. Check <nrfx_config.h>."
#endif
#include <nrfx_spi.h>
#include "prs/nrfx_prs.h"
#include <hal/nrf_gpio.h>
#define NRFX_LOG_MODULE SPI
#include <nrfx_log.h>
// Control block - driver instance local data.
typedef struct
{
nrfx_spi_evt_handler_t handler;
void * p_context;
nrfx_spi_evt_t evt; // Keep the struct that is ready for event handler. Less memcpy.
nrfx_drv_state_t state;
volatile bool transfer_in_progress;
// [no need for 'volatile' attribute for the following members, as they
// are not concurrently used in IRQ handlers and main line code]
uint8_t ss_pin;
uint8_t miso_pin;
uint8_t orc;
size_t bytes_transferred;
bool abort;
} spi_control_block_t;
static spi_control_block_t m_cb[NRFX_SPI_ENABLED_COUNT];
nrfx_err_t nrfx_spi_init(nrfx_spi_t const * const p_instance,
nrfx_spi_config_t const * p_config,
nrfx_spi_evt_handler_t handler,
void * p_context)
{
NRFX_ASSERT(p_config);
spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
nrfx_err_t err_code;
if (p_cb->state != NRFX_DRV_STATE_UNINITIALIZED)
{
err_code = NRFX_ERROR_INVALID_STATE;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
#if NRFX_CHECK(NRFX_PRS_ENABLED)
static nrfx_irq_handler_t const irq_handlers[NRFX_SPI_ENABLED_COUNT] = {
#if NRFX_CHECK(NRFX_SPI0_ENABLED)
nrfx_spi_0_irq_handler,
#endif
#if NRFX_CHECK(NRFX_SPI1_ENABLED)
nrfx_spi_1_irq_handler,
#endif
#if NRFX_CHECK(NRFX_SPI2_ENABLED)
nrfx_spi_2_irq_handler,
#endif
};
if (nrfx_prs_acquire(p_instance->p_reg,
irq_handlers[p_instance->drv_inst_idx]) != NRFX_SUCCESS)
{
err_code = NRFX_ERROR_BUSY;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
#endif // NRFX_CHECK(NRFX_PRS_ENABLED)
p_cb->handler = handler;
p_cb->p_context = p_context;
uint32_t mosi_pin;
uint32_t miso_pin;
// Configure pins used by the peripheral:
// - SCK - output with initial value corresponding with the SPI mode used:
// 0 - for modes 0 and 1 (CPOL = 0), 1 - for modes 2 and 3 (CPOL = 1);
// according to the reference manual guidelines this pin and its input
// buffer must always be connected for the SPI to work.
if (p_config->mode <= NRF_SPI_MODE_1)
{
nrf_gpio_pin_clear(p_config->sck_pin);
}
else
{
nrf_gpio_pin_set(p_config->sck_pin);
}
nrf_gpio_cfg(p_config->sck_pin,
NRF_GPIO_PIN_DIR_OUTPUT,
NRF_GPIO_PIN_INPUT_CONNECT,
NRF_GPIO_PIN_NOPULL,
NRF_GPIO_PIN_S0S1,
NRF_GPIO_PIN_NOSENSE);
// - MOSI (optional) - output with initial value 0,
if (p_config->mosi_pin != NRFX_SPI_PIN_NOT_USED)
{
mosi_pin = p_config->mosi_pin;
nrf_gpio_pin_clear(mosi_pin);
nrf_gpio_cfg_output(mosi_pin);
}
else
{
mosi_pin = NRF_SPI_PIN_NOT_CONNECTED;
}
// - MISO (optional) - input,
if (p_config->miso_pin != NRFX_SPI_PIN_NOT_USED)
{
miso_pin = p_config->miso_pin;
nrf_gpio_cfg_input(miso_pin, (nrf_gpio_pin_pull_t)NRFX_SPI_MISO_PULL_CFG);
}
else
{
miso_pin = NRF_SPI_PIN_NOT_CONNECTED;
}
m_cb[p_instance->drv_inst_idx].miso_pin = p_config->miso_pin;
// - Slave Select (optional) - output with initial value 1 (inactive).
if (p_config->ss_pin != NRFX_SPI_PIN_NOT_USED)
{
nrf_gpio_pin_set(p_config->ss_pin);
nrf_gpio_cfg_output(p_config->ss_pin);
}
m_cb[p_instance->drv_inst_idx].ss_pin = p_config->ss_pin;
NRF_SPI_Type * p_spi = p_instance->p_reg;
nrf_spi_pins_set(p_spi, p_config->sck_pin, mosi_pin, miso_pin);
nrf_spi_frequency_set(p_spi, p_config->frequency);
nrf_spi_configure(p_spi, p_config->mode, p_config->bit_order);
m_cb[p_instance->drv_inst_idx].orc = p_config->orc;
if (p_cb->handler)
{
nrf_spi_int_enable(p_spi, NRF_SPI_INT_READY_MASK);
}
nrf_spi_enable(p_spi);
if (p_cb->handler)
{
NRFX_IRQ_PRIORITY_SET(nrfx_get_irq_number(p_instance->p_reg),
p_config->irq_priority);
NRFX_IRQ_ENABLE(nrfx_get_irq_number(p_instance->p_reg));
}
p_cb->transfer_in_progress = false;
p_cb->state = NRFX_DRV_STATE_INITIALIZED;
err_code = NRFX_SUCCESS;
NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
void nrfx_spi_uninit(nrfx_spi_t const * const p_instance)
{
spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
NRFX_ASSERT(p_cb->state != NRFX_DRV_STATE_UNINITIALIZED);
if (p_cb->handler)
{
NRFX_IRQ_DISABLE(nrfx_get_irq_number(p_instance->p_reg));
}
NRF_SPI_Type * p_spi = p_instance->p_reg;
if (p_cb->handler)
{
nrf_spi_int_disable(p_spi, NRF_SPI_ALL_INTS_MASK);
}
if (p_cb->miso_pin != NRFX_SPI_PIN_NOT_USED)
{
nrf_gpio_cfg_default(p_cb->miso_pin);
}
nrf_spi_disable(p_spi);
#if NRFX_CHECK(NRFX_PRS_ENABLED)
nrfx_prs_release(p_instance->p_reg);
#endif
p_cb->state = NRFX_DRV_STATE_UNINITIALIZED;
}
static void finish_transfer(spi_control_block_t * p_cb)
{
// If Slave Select signal is used, this is the time to deactivate it.
if (p_cb->ss_pin != NRFX_SPI_PIN_NOT_USED)
{
nrf_gpio_pin_set(p_cb->ss_pin);
}
// By clearing this flag before calling the handler we allow subsequent
// transfers to be started directly from the handler function.
p_cb->transfer_in_progress = false;
p_cb->evt.type = NRFX_SPI_EVENT_DONE;
p_cb->handler(&p_cb->evt, p_cb->p_context);
}
// This function is called from the IRQ handler or, in blocking mode, directly
// from the 'spi_xfer' function.
// It returns true as long as the transfer should be continued, otherwise (when
// there is nothing more to send/receive) it returns false.
static bool transfer_byte(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb)
{
// Read the data byte received in this transfer (always, because no further
// READY event can be generated until the current byte is read out from the
// RXD register), and store it in the RX buffer (only when needed).
volatile uint8_t rx_data = nrf_spi_rxd_get(p_spi);
if (p_cb->bytes_transferred < p_cb->evt.xfer_desc.rx_length)
{
p_cb->evt.xfer_desc.p_rx_buffer[p_cb->bytes_transferred] = rx_data;
}
++p_cb->bytes_transferred;
// Check if there are more bytes to send or receive and write proper data
// byte (next one from TX buffer or over-run character) to the TXD register
// when needed.
// NOTE - we've already used 'p_cb->bytes_transferred + 1' bytes from our
// buffers, because we take advantage of double buffering of TXD
// register (so in effect one byte is still being transmitted now);
// see how the transfer is started in the 'spi_xfer' function.
size_t bytes_used = p_cb->bytes_transferred + 1;
if (p_cb->abort)
{
if (bytes_used < p_cb->evt.xfer_desc.tx_length)
{
p_cb->evt.xfer_desc.tx_length = bytes_used;
}
if (bytes_used < p_cb->evt.xfer_desc.rx_length)
{
p_cb->evt.xfer_desc.rx_length = bytes_used;
}
}
if (bytes_used < p_cb->evt.xfer_desc.tx_length)
{
nrf_spi_txd_set(p_spi, p_cb->evt.xfer_desc.p_tx_buffer[bytes_used]);
return true;
}
else if (bytes_used < p_cb->evt.xfer_desc.rx_length)
{
nrf_spi_txd_set(p_spi, p_cb->orc);
return true;
}
return (p_cb->bytes_transferred < p_cb->evt.xfer_desc.tx_length ||
p_cb->bytes_transferred < p_cb->evt.xfer_desc.rx_length);
}
static void spi_xfer(NRF_SPI_Type * p_spi,
spi_control_block_t * p_cb,
nrfx_spi_xfer_desc_t const * p_xfer_desc)
{
p_cb->bytes_transferred = 0;
nrf_spi_int_disable(p_spi, NRF_SPI_INT_READY_MASK);
nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY);
// Start the transfer by writing some byte to the TXD register;
// if TX buffer is not empty, take the first byte from this buffer,
// otherwise - use over-run character.
nrf_spi_txd_set(p_spi,
(p_xfer_desc->tx_length > 0 ? p_xfer_desc->p_tx_buffer[0] : p_cb->orc));
// TXD register is double buffered, so next byte to be transmitted can
// be written immediately, if needed, i.e. if TX or RX transfer is to
// be more that 1 byte long. Again - if there is something more in TX
// buffer send it, otherwise use over-run character.
if (p_xfer_desc->tx_length > 1)
{
nrf_spi_txd_set(p_spi, p_xfer_desc->p_tx_buffer[1]);
}
else if (p_xfer_desc->rx_length > 1)
{
nrf_spi_txd_set(p_spi, p_cb->orc);
}
// For blocking mode (user handler not provided) wait here for READY
// events (indicating that the byte from TXD register was transmitted
// and a new incoming byte was moved to the RXD register) and continue
// transaction until all requested bytes are transferred.
// In non-blocking mode - IRQ service routine will do this stuff.
if (p_cb->handler)
{
nrf_spi_int_enable(p_spi, NRF_SPI_INT_READY_MASK);
}
else
{
do {
while (!nrf_spi_event_check(p_spi, NRF_SPI_EVENT_READY)) {}
nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY);
NRFX_LOG_DEBUG("SPI: Event: NRF_SPI_EVENT_READY.");
} while (transfer_byte(p_spi, p_cb));
if (p_cb->ss_pin != NRFX_SPI_PIN_NOT_USED)
{
nrf_gpio_pin_set(p_cb->ss_pin);
}
}
}
nrfx_err_t nrfx_spi_xfer(nrfx_spi_t const * const p_instance,
nrfx_spi_xfer_desc_t const * p_xfer_desc,
uint32_t flags)
{
spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
NRFX_ASSERT(p_cb->state != NRFX_DRV_STATE_UNINITIALIZED);
NRFX_ASSERT(p_xfer_desc->p_tx_buffer != NULL || p_xfer_desc->tx_length == 0);
NRFX_ASSERT(p_xfer_desc->p_rx_buffer != NULL || p_xfer_desc->rx_length == 0);
nrfx_err_t err_code = NRFX_SUCCESS;
if (p_cb->transfer_in_progress)
{
err_code = NRFX_ERROR_BUSY;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
else
{
if (p_cb->handler)
{
p_cb->transfer_in_progress = true;
}
}
p_cb->evt.xfer_desc = *p_xfer_desc;
p_cb->abort = false;
if (p_cb->ss_pin != NRFX_SPI_PIN_NOT_USED)
{
nrf_gpio_pin_clear(p_cb->ss_pin);
}
if (flags)
{
p_cb->transfer_in_progress = false;
err_code = NRFX_ERROR_NOT_SUPPORTED;
}
else
{
spi_xfer(p_instance->p_reg, p_cb, p_xfer_desc);
}
NRFX_LOG_INFO("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
void nrfx_spi_abort(nrfx_spi_t const * p_instance)
{
spi_control_block_t * p_cb = &m_cb[p_instance->drv_inst_idx];
NRFX_ASSERT(p_cb->state != NRFX_DRV_STATE_UNINITIALIZED);
p_cb->abort = true;
}
static void irq_handler(NRF_SPI_Type * p_spi, spi_control_block_t * p_cb)
{
NRFX_ASSERT(p_cb->handler);
nrf_spi_event_clear(p_spi, NRF_SPI_EVENT_READY);
NRFX_LOG_DEBUG("Event: NRF_SPI_EVENT_READY.");
if (!transfer_byte(p_spi, p_cb))
{
finish_transfer(p_cb);
}
}
#if NRFX_CHECK(NRFX_SPI0_ENABLED)
void nrfx_spi_0_irq_handler(void)
{
irq_handler(NRF_SPI0, &m_cb[NRFX_SPI0_INST_IDX]);
}
#endif
#if NRFX_CHECK(NRFX_SPI1_ENABLED)
void nrfx_spi_1_irq_handler(void)
{
irq_handler(NRF_SPI1, &m_cb[NRFX_SPI1_INST_IDX]);
}
#endif
#if NRFX_CHECK(NRFX_SPI2_ENABLED)
void nrfx_spi_2_irq_handler(void)
{
irq_handler(NRF_SPI2, &m_cb[NRFX_SPI2_INST_IDX]);
}
#endif
#endif // NRFX_CHECK(NRFX_SPI_ENABLED)