blob: 7c41e4d51e0632740fdc8eb07bb5407370ae5d48 [file] [log] [blame]
//*****************************************************************************
//
// am_hal_i2c_bit_bang.c
//! @file
//!
//! @brief I2C bit bang module.
//!
//! These functions implement the I2C bit bang utility
//! It implements an I2C interface at close to 400 kHz
//
//*****************************************************************************
//*****************************************************************************
//
// Copyright (c) 2017, Ambiq Micro
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its
// contributors may be used to endorse or promote products derived from this
// software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// This is part of revision v1.2.10-2-gea660ad-hotfix2 of the AmbiqSuite Development Package.
//
//*****************************************************************************
#include <stdint.h>
#include <stdbool.h>
#include "am_mcu_apollo.h"
#include "am_util.h"
#include "am_hal_i2c_bit_bang.h"
// Max number of clock cycles to wait for clock stretch
#define I2C_BB_MAX_CLOCK_STRETCH_WAIT 100
#define I2C_BB_DESIRED_FREQ_HZ 400000
#define I2C_BB_CYCLES_PER_DELAY_COUNT 3
#define I2C_BB_ONE_BIT_TIME_IN_CYCLES (AM_HAL_CLKGEN_FREQ_MAX_HZ/I2C_BB_DESIRED_FREQ_HZ)
#define I2C_BB_ONE_BIT_TIME_IN_DELAY_COUNT (I2C_BB_ONE_BIT_TIME_IN_CYCLES/I2C_BB_CYCLES_PER_DELAY_COUNT)
// Number of loops (each worth 3 cycles) needed to delay for defined time
// This is imprecise, as there is a setup time as well which is not accounted
// for
// One Bit time = 120 Cycles (400 kHz @ 48 MHz)
#define HALF_BIT_TIME (I2C_BB_ONE_BIT_TIME_IN_DELAY_COUNT/2)
#define QUARTER_BIT_TIME (I2C_BB_ONE_BIT_TIME_IN_DELAY_COUNT/4)
#define ASM_DELAY am_hal_flash_delay
// Empirically determined adjustments to account for the fact that there is a
// variable time spent in actual processing as well, and hence we need not delay
// for the full time. This processing time is variable based on exact processing
// needed at various times, and will also vary based on compiler type and
// optimization levels
#define I2C_BB_TIMER_ADJUST 6 // Can not be more than QUARTER_BIT_TIME - 1
#define I2C_BB_TIMER_HI_ADJUST 15 // Can not be more than HALF_BIT_TIME - 1
#define I2C_BB_TIMER_LO_ADJUST 13 // Can not be more than HALF_BIT_TIME - 1
// Wait till it is time to end the SCL Hi Period
#define WAIT_I2C_CLOCK_HI_PERIOD() ASM_DELAY(HALF_BIT_TIME - I2C_BB_TIMER_HI_ADJUST)
// Wait till it is time to end the SCL Lo Period
#define WAIT_I2C_CLOCK_LOW_PERIOD() ASM_DELAY(HALF_BIT_TIME - I2C_BB_TIMER_LO_ADJUST)
// Delay for Quarter Clock
#define WAIT_FOR_QUARTER_I2C_CLOCK() ASM_DELAY(QUARTER_BIT_TIME - I2C_BB_TIMER_ADJUST)
#define WRITE_SCL_LO() \
do { \
AM_REGVAL(am_hal_i2c_bit_bang_priv.sck_reg_clr_addr) = (am_hal_i2c_bit_bang_priv.sck_reg_val); \
} while(0)
#define PULL_SCL_HI() \
do { \
AM_REGVAL(am_hal_i2c_bit_bang_priv.sck_reg_set_addr) = (am_hal_i2c_bit_bang_priv.sck_reg_val); \
} while(0)
#define GET_SCL() (AM_REGVAL(am_hal_i2c_bit_bang_priv.sck_reg_read_addr) & (am_hal_i2c_bit_bang_priv.sck_reg_val))
#define GET_SDA() (AM_REGVAL(am_hal_i2c_bit_bang_priv.sda_reg_read_addr) & (am_hal_i2c_bit_bang_priv.sda_reg_val))
#define WRITE_SDA_LO() \
do { \
AM_REGVAL(am_hal_i2c_bit_bang_priv.sda_reg_clr_addr) = (am_hal_i2c_bit_bang_priv.sda_reg_val); \
} while(0)
#define PULL_SDA_HI() \
do { \
AM_REGVAL(am_hal_i2c_bit_bang_priv.sda_reg_set_addr) = (am_hal_i2c_bit_bang_priv.sda_reg_val); \
} while(0)
//*****************************************************************************
//
// I2C Bit Bang Private Data Structure
//
//*****************************************************************************
typedef struct am_util_bit_bang_priv
{
bool start_flag;
uint32_t sck_gpio_number;
uint32_t sda_gpio_number;
uint32_t sck_reg_set_addr;
uint32_t sck_reg_clr_addr;
uint32_t sck_reg_read_addr;
uint32_t sck_reg_val;
uint32_t sda_reg_set_addr;
uint32_t sda_reg_clr_addr;
uint32_t sda_reg_read_addr;
uint32_t sda_reg_val;
} am_hal_i2c_bit_bang_priv_t;
static am_hal_i2c_bit_bang_priv_t am_hal_i2c_bit_bang_priv;
//
// Wait for any stretched clock to go high
// If it times out - return failure
//
static inline bool
i2c_pull_and_wait_scl_hi(void)
{
// Maximum time to wait for clock stretching
uint32_t maxLoop = 4*I2C_BB_MAX_CLOCK_STRETCH_WAIT + 1;
// Pull SCL High
PULL_SCL_HI();
// Poll for SCL to check for clock stretching
while (!GET_SCL())
{
if (--maxLoop == 0)
{
// timeout!
return true;
}
WAIT_FOR_QUARTER_I2C_CLOCK();
}
return false;
}
//*****************************************************************************
//
//! @brief Initialize i2c bit bang private data structure
//!
//! @param sck_gpio_number is the GPIO # for the I2C SCK clock pin
//! @param sda_gpio_number is the GPIO # for the I2C SDA data pin
//!
//! This function initializes the I2C bit bang utility's internal data struct.
//!
//! returns None.
//
//*****************************************************************************
am_hal_i2c_bit_bang_enum_t
am_hal_i2c_bit_bang_init(uint32_t sck_gpio_number,
uint32_t sda_gpio_number)
{
int i;
//
// remember GPIO pin assignments for I2C bus signals
//
am_hal_i2c_bit_bang_priv.sck_gpio_number = sck_gpio_number;
am_hal_i2c_bit_bang_priv.sda_gpio_number = sda_gpio_number;
am_hal_i2c_bit_bang_priv.sck_reg_set_addr = AM_HAL_GPIO_WTS_REG(sck_gpio_number);
am_hal_i2c_bit_bang_priv.sck_reg_clr_addr = AM_HAL_GPIO_WTC_REG(sck_gpio_number);
am_hal_i2c_bit_bang_priv.sck_reg_read_addr = AM_HAL_GPIO_RD_REG(sck_gpio_number);
am_hal_i2c_bit_bang_priv.sck_reg_val = AM_HAL_GPIO_WTC_M(sck_gpio_number);
am_hal_i2c_bit_bang_priv.sda_reg_set_addr = AM_HAL_GPIO_WTS_REG(sda_gpio_number);
am_hal_i2c_bit_bang_priv.sda_reg_clr_addr = AM_HAL_GPIO_WTC_REG(sda_gpio_number);
am_hal_i2c_bit_bang_priv.sda_reg_read_addr = AM_HAL_GPIO_RD_REG(sda_gpio_number);
am_hal_i2c_bit_bang_priv.sda_reg_val = AM_HAL_GPIO_WTC_M(sda_gpio_number);
//
// Set SCK GPIO data bit high so we aren't pulling down the clock
//
am_hal_gpio_out_bit_set(sck_gpio_number);
//
// Set up SCK GPIO configuration bi-direction, input
//
am_hal_gpio_pin_config(sck_gpio_number, AM_HAL_PIN_OPENDRAIN);
//
// Set SDA GPIO data bit high so we aren't pulling down the data line
//
am_hal_gpio_out_bit_set(sda_gpio_number);
//
// Set up SDA GPIO configuration bi-direction, input
//
am_hal_gpio_pin_config(sda_gpio_number, AM_HAL_PIN_OPENDRAIN);
// Now make sure we have control of the clock line
//
// Wait for any stretched clock to go high. Return if still not high
//
if (i2c_pull_and_wait_scl_hi())
{
return AM_HAL_I2C_BIT_BANG_CLOCK_TIMEOUT;
}
if (!GET_SDA())
{
// If previous transaction did not finish - SDA may be pulled low for a Read.
// If so - need to flush out the data (max 8 bits) & NACK
for (i = 0; i < 9; i++)
{
//
// Pull down on clock line
//
WRITE_SCL_LO();
//
// Delay for 1/2 bit cell time to start the clock and let peer write on SDA
//
WAIT_I2C_CLOCK_LOW_PERIOD();
if (i2c_pull_and_wait_scl_hi())
{
return AM_HAL_I2C_BIT_BANG_CLOCK_TIMEOUT;
}
if (GET_SDA())
{
// Send START/STOP to clear the bus
//
// Delay for 1/4 bit cell time
//
WAIT_FOR_QUARTER_I2C_CLOCK();
WRITE_SDA_LO();
//
// Delay for 1/4 bit cell time
//
WAIT_FOR_QUARTER_I2C_CLOCK();
//
// Pull down on clock line
//
WRITE_SCL_LO();
//
// Delay for 1/2 bit cell time to start the clock and let peer write on SDA
//
WAIT_I2C_CLOCK_LOW_PERIOD();
//
// Release the clock line
//
PULL_SCL_HI();
//
// Delay for 1/4 bit cell time
//
WAIT_FOR_QUARTER_I2C_CLOCK();
PULL_SDA_HI();
//
// Delay for 1/4 bit cell time
//
WAIT_FOR_QUARTER_I2C_CLOCK();
break;
}
}
if (i == 9)
{
// It is it still stuck after 9 clocks - something is wrong. Need to bail out
return AM_HAL_I2C_BIT_BANG_DATA_TIMEOUT;
}
}
return AM_HAL_I2C_BIT_BANG_SUCCESS;
}
//*****************************************************************************
//
//! @brief Receive one data byte from an I2C device
//!
//! This function handles sending one byte to a slave device
//! bNack defines if we should send an ACK or NACK
//!
//! returns the byte received
//
//*****************************************************************************
static inline am_hal_i2c_bit_bang_enum_t
i2c_receive_byte(uint8_t *pRxByte, bool bNack)
{
int i;
uint8_t data_byte = 0;
//
// Loop through receiving 8 bits
//
for (i = 0; i < 8; i++)
{
//
// Pull down on clock line
//
WRITE_SCL_LO();
//
// release the data line from from the previous ACK
//
PULL_SDA_HI();
//
// Delay for 1/2 bit cell time to start the clock and let peer write on SDA
//
WAIT_I2C_CLOCK_LOW_PERIOD();
if (i2c_pull_and_wait_scl_hi())
{
return AM_HAL_I2C_BIT_BANG_CLOCK_TIMEOUT;
}
//
// grab the data bit here
//
if ( GET_SDA() )
{
//
// set the bit in the data byte to be returned
//
data_byte |= (0x80 >> i);
}
//
// Delay for 1/2 bit cell time while clock is high
//
WAIT_I2C_CLOCK_HI_PERIOD();
}
*pRxByte = data_byte;
//
// Pull down on clock line
//
WRITE_SCL_LO();
//
// pull the data line down so we can ACK/NAK the byte we just received
//
if (bNack)
{
//
// Pull up on data line with clock low to indicate NAK
//
PULL_SDA_HI();
}
else
{
//
// Pull down on data line with clock low to indicate ACK
//
WRITE_SDA_LO();
}
//
// Delay for 1/2 bit cell time before sending ACK to device
//
WAIT_I2C_CLOCK_LOW_PERIOD();
if (i2c_pull_and_wait_scl_hi())
{
return AM_HAL_I2C_BIT_BANG_CLOCK_TIMEOUT;
}
//
// Delay for 1/2 bit cell time while clock is high to le peer sample the ACK/NAK
//
WAIT_I2C_CLOCK_HI_PERIOD();
//
// Give the received data byte back to them
//
return AM_HAL_I2C_BIT_BANG_SUCCESS;
}
//*****************************************************************************
//
//! @brief Send one data bytes to an I2C device
//!
//! @param one_byte the byte to send, could be address could be data
//!
//! This function handles sending one byte to a slave device
//! Starts with 0 clock and runs till full cycle
//!
//! returns I2C BB ENUM
//! {
//! AM_HAL_I2C_BIT_BANG_SUCCESS,
//! AM_HAL_I2C_BIT_BANG_ADDRESS_NAKED
//! }
//
//*****************************************************************************
static inline am_hal_i2c_bit_bang_enum_t
i2c_send_byte(uint8_t one_byte)
{
int i;
bool data_naked = false;
//
// Loop through sending 8 bits
//
for (i = 0; i < 8; i++)
{
//
// Pull down on clock line
//
WRITE_SCL_LO();
//
// output the next data bit
//
if ( one_byte & (0x80 >> i) )
{
PULL_SDA_HI();
}
else
{
WRITE_SDA_LO();
}
//
// Delay for 1/2 bit cell time to start the clock
//
WAIT_I2C_CLOCK_LOW_PERIOD();
if (i2c_pull_and_wait_scl_hi())
{
return AM_HAL_I2C_BIT_BANG_CLOCK_TIMEOUT;
}
//
// Delay for 1/2 bit cell time while clock is high
//
WAIT_I2C_CLOCK_HI_PERIOD();
}
//
// Pull down on clock line
//
WRITE_SCL_LO();
//
// Delay for 1/2 bit cell time to start the clock
//
WAIT_I2C_CLOCK_LOW_PERIOD();
if (i2c_pull_and_wait_scl_hi())
{
return AM_HAL_I2C_BIT_BANG_CLOCK_TIMEOUT;
}
//
// Grab the state of the ACK bit and return it
//
data_naked = GET_SDA();
//
// Delay for 1/2 bit cell time to complete the high period
//
WAIT_I2C_CLOCK_HI_PERIOD();
if ( data_naked )
{
return AM_HAL_I2C_BIT_BANG_DATA_NAKED;
}
else
{
return AM_HAL_I2C_BIT_BANG_SUCCESS;
}
}
//*****************************************************************************
//
//! @brief Receive a string of data bytes from an I2C device
//!
//! @param address (only 8 bit I2C addresses are supported)
//! LSB is I2C R/W
//! @param number_of_bytes to transfer (# payload bytes)
//! @param pData pointer to data buffer to receive payload
//!
//! This function handles receiving a payload from a slave device
//!
//! returns ENUM{AM_HAL_I2C_BIT_BANG_SUCCESS,AM_HAL_I2C_BIT_BANG_ADDRESS_NAKED}
//
//*****************************************************************************
am_hal_i2c_bit_bang_enum_t
am_hal_i2c_bit_bang_receive(uint8_t address, uint32_t number_of_bytes,
uint8_t *pData, uint8_t ui8Offset,
bool bUseOffset, bool bNoStop)
{
uint32_t ui32I;
am_hal_i2c_bit_bang_enum_t status = AM_HAL_I2C_BIT_BANG_SUCCESS;
if (i2c_pull_and_wait_scl_hi())
{
return AM_HAL_I2C_BIT_BANG_CLOCK_TIMEOUT;
}
//
// Pull down on data line with clock high --> START CONDITION
//
WRITE_SDA_LO();
//
// Delay for 1/2 bit cell time to start the clock
//
WAIT_I2C_CLOCK_HI_PERIOD();
//
// send the address byte and wait for the ACK/NAK
//
status = i2c_send_byte(address);
if ( status != AM_HAL_I2C_BIT_BANG_SUCCESS )
{
if ( status == AM_HAL_I2C_BIT_BANG_DATA_NAKED)
{
return AM_HAL_I2C_BIT_BANG_ADDRESS_NAKED;
}
return status;
}
if ( bUseOffset )
{
status = i2c_send_byte(ui8Offset);
if ( status != AM_HAL_I2C_BIT_BANG_SUCCESS )
{
return status;
}
}
//
// receive the requested number of data bytes
//
for (ui32I = 0; ui32I < number_of_bytes - 1; ui32I++)
{
//
// receive the data bytes and send ACK for each one
//
status = i2c_receive_byte(pData, false);
if (status != AM_HAL_I2C_BIT_BANG_SUCCESS)
{
return status;
}
pData++;
}
// Send NAK for the last byte
status = i2c_receive_byte(pData, true);
if (status != AM_HAL_I2C_BIT_BANG_SUCCESS)
{
return status;
}
//********************
// Send stop condition
//********************
//
// Pull down on clock line
//
WRITE_SCL_LO();
//
// Delay for 1/4 bit cell time
//
WAIT_FOR_QUARTER_I2C_CLOCK();
if (!bNoStop)
{
//
// Pull down on data line with clock low
//
WRITE_SDA_LO();
}
else
{
//
// Release data line with clock low itself, as we are not sending STOP
//
PULL_SDA_HI();
}
//
//
// Delay for 1/4 bit cell time
//
WAIT_FOR_QUARTER_I2C_CLOCK();
if (i2c_pull_and_wait_scl_hi())
{
return AM_HAL_I2C_BIT_BANG_CLOCK_TIMEOUT;
}
//
// Delay for 1/2 bit cell time while clock is high
//
WAIT_I2C_CLOCK_HI_PERIOD();
if (!bNoStop)
{
//
// release data line with clock high --> STOP CONDITION
//
PULL_SDA_HI();
}
//
// message successfully received (how could we fail???)
//
return AM_HAL_I2C_BIT_BANG_SUCCESS;
}
//*****************************************************************************
//
//! @brief Send a string of data bytes to an I2C device
//!
//! @param address (only 8 bit I2C addresses are supported)
//! LSB is I2C R/W
//! @param number_of_bytes to transfer (# payload bytes)
//! @param pData pointer to data buffer containing payload
//!
//! This function handles sending a payload to a slave device
//!
//! returns ENUM {AM_HAL_I2C_BIT_BANG_SUCCESS, AM_HAL_I2C_BIT_BANG_DATA_NAKED,
//! AM_HAL_I2C_BIT_BANG_ADDRESS_NAKED}
//
//*****************************************************************************
am_hal_i2c_bit_bang_enum_t
am_hal_i2c_bit_bang_send(uint8_t address, uint32_t number_of_bytes,
uint8_t *pData, uint8_t ui8Offset,
bool bUseOffset, bool bNoStop)
{
uint32_t ui32I;
am_hal_i2c_bit_bang_enum_t status;
bool data_naked = false;
if (i2c_pull_and_wait_scl_hi())
{
return AM_HAL_I2C_BIT_BANG_CLOCK_TIMEOUT;
}
//
// Pull down on data line with clock high --> START CONDITION
//
WRITE_SDA_LO();
//
// Delay for 1/2 bit cell time to start the clock
//
WAIT_I2C_CLOCK_HI_PERIOD();
//
// send the address byte and wait for the ACK/NAK
//
status = i2c_send_byte(address);
if ( status != AM_HAL_I2C_BIT_BANG_SUCCESS )
{
if ( status == AM_HAL_I2C_BIT_BANG_DATA_NAKED)
{
return AM_HAL_I2C_BIT_BANG_ADDRESS_NAKED;
}
return status;
}
if ( bUseOffset )
{
status = i2c_send_byte(ui8Offset);
if ( status != AM_HAL_I2C_BIT_BANG_SUCCESS )
{
return status;
}
}
//
// send the requested number of data bytes
//
for (ui32I = 0; ui32I < number_of_bytes; ui32I++)
{
//
// send out the data bytes while watching for premature NAK
//
status = i2c_send_byte(*pData++);
if (status != AM_HAL_I2C_BIT_BANG_SUCCESS)
{
if (status == AM_HAL_I2C_BIT_BANG_DATA_NAKED)
{
if (ui32I != (number_of_bytes-1))
{
data_naked = true;
// TODO - should we be sending the STOP bit in this case regardless of bNoStop?
break;
}
else
{
status = AM_HAL_I2C_BIT_BANG_SUCCESS;
}
}
else
{
return status;
}
}
}
//********************
// Send stop condition
//********************
//
// Pull down on clock line
//
WRITE_SCL_LO();
//
// Delay for 1/4 bit cell time
//
WAIT_FOR_QUARTER_I2C_CLOCK();
if (!bNoStop)
{
//
// Pull down on data line with clock low
//
WRITE_SDA_LO();
}
else
{
//
// Release data line with clock low itself, as we are not sending STOP
//
PULL_SDA_HI();
}
//
// Delay for 1/4 bit cell time
//
WAIT_FOR_QUARTER_I2C_CLOCK();
if (i2c_pull_and_wait_scl_hi())
{
return AM_HAL_I2C_BIT_BANG_CLOCK_TIMEOUT;
}
if (!bNoStop)
{
//
// release data line with clock high --> STOP CONDITION
//
PULL_SDA_HI();
}
//
// Delay for 1/2 bit cell time while clock is high
//
WAIT_I2C_CLOCK_HI_PERIOD();
if ( data_naked )
{
return AM_HAL_I2C_BIT_BANG_DATA_NAKED; // if it happens early
}
//
// message successfully sent
//
return AM_HAL_I2C_BIT_BANG_SUCCESS;
}