blob: a6ed1a599ce47bdfe3a200edc705ad89da27d49a [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/**
* This file provides an interface to the boot loader. Functions defined in
* this file should only be called while the boot loader is running.
*/
#include <assert.h>
#include <stddef.h>
#include <inttypes.h>
#include <stdlib.h>
#include <string.h>
#include "os/mynewt.h"
#include "flash_map/flash_map.h"
#include <hal/hal_flash.h>
#include <hal/hal_watchdog.h>
#include "bootutil/bootutil.h"
#include "bootutil/image.h"
#include "bootutil_priv.h"
#define BOOT_MAX_IMG_SECTORS 120
/** Number of image slots in flash; currently limited to two. */
#define BOOT_NUM_SLOTS 2
static struct {
struct {
struct image_header hdr;
struct flash_area *sectors;
int num_sectors;
} imgs[BOOT_NUM_SLOTS];
struct flash_area scratch_sector;
uint8_t write_sz;
} boot_data;
struct boot_status_table {
/**
* For each field, a value of 0 means "any".
*/
uint8_t bst_magic_slot0;
uint8_t bst_magic_scratch;
uint8_t bst_copy_done_slot0;
uint8_t bst_status_source;
};
/**
* This set of tables maps swap state contents to boot status location.
* When searching for a match, these tables must be iterated in order.
*/
static const struct boot_status_table boot_status_tables[] = {
{
/* | slot-0 | scratch |
* ----------+------------+------------|
* magic | Good | Any |
* copy-done | 0x01 | N/A |
* ----------+------------+------------'
* source: none |
* ------------------------------------'
*/
.bst_magic_slot0 = BOOT_MAGIC_GOOD,
.bst_magic_scratch = 0,
.bst_copy_done_slot0 = 0x01,
.bst_status_source = BOOT_STATUS_SOURCE_NONE,
},
{
/* | slot-0 | scratch |
* ----------+------------+------------|
* magic | Good | Any |
* copy-done | 0xff | N/A |
* ----------+------------+------------'
* source: slot 0 |
* ------------------------------------'
*/
.bst_magic_slot0 = BOOT_MAGIC_GOOD,
.bst_magic_scratch = 0,
.bst_copy_done_slot0 = 0xff,
.bst_status_source = BOOT_STATUS_SOURCE_SLOT0,
},
{
/* | slot-0 | scratch |
* ----------+------------+------------|
* magic | Any | Good |
* copy-done | Any | N/A |
* ----------+------------+------------'
* source: scratch |
* ------------------------------------'
*/
.bst_magic_slot0 = 0,
.bst_magic_scratch = BOOT_MAGIC_GOOD,
.bst_copy_done_slot0 = 0,
.bst_status_source = BOOT_STATUS_SOURCE_SCRATCH,
},
{
/* | slot-0 | scratch |
* ----------+------------+------------|
* magic | Unset | Any |
* copy-done | 0xff | N/A |
* ----------+------------+------------|
* source: varies |
* ------------------------------------+------------------------------+
* This represents one of two cases: |
* o No swaps ever (no status to read, so no harm in checking). |
* o Mid-revert; status in slot 0. |
* -------------------------------------------------------------------'
*/
.bst_magic_slot0 = BOOT_MAGIC_UNSET,
.bst_magic_scratch = 0,
.bst_copy_done_slot0 = 0xff,
.bst_status_source = BOOT_STATUS_SOURCE_SLOT0,
},
};
#define BOOT_STATUS_TABLES_COUNT \
(sizeof boot_status_tables / sizeof boot_status_tables[0])
/**
* This table indicates the next swap type that should be performed. The first
* column contains the current swap type. The second column contains the swap
* type that should be effected after the first completes.
*/
static const uint8_t boot_swap_trans_table[][2] = {
/* From To */
{ BOOT_SWAP_TYPE_REVERT, BOOT_SWAP_TYPE_NONE },
{ BOOT_SWAP_TYPE_PERM, BOOT_SWAP_TYPE_NONE },
{ BOOT_SWAP_TYPE_TEST, BOOT_SWAP_TYPE_REVERT },
};
#define BOOT_SWAP_TRANS_TABLE_SIZE \
(sizeof boot_swap_trans_table / sizeof boot_swap_trans_table[0])
/**
* Determines where in flash the most recent boot status is stored. The boot
* status is necessary for completing a swap that was interrupted by a boot
* loader reset.
*
* @return A BOOT_STATUS_SOURCE_[...] code indicating where * status should be read from.
*/
static int
boot_status_source(void)
{
const struct boot_status_table *table;
struct boot_swap_state state_scratch;
struct boot_swap_state state_slot0;
struct boot_swap_state state_slot1;
int rc;
int i;
rc = boot_read_swap_state_img(0, &state_slot0);
assert(rc == 0);
rc = boot_read_swap_state_img(1, &state_slot1);
assert(rc == 0);
rc = boot_read_swap_state_scratch(&state_scratch);
assert(rc == 0);
for (i = 0; i < BOOT_STATUS_TABLES_COUNT; i++) {
table = boot_status_tables + i;
if ((table->bst_magic_slot0 == 0 ||
table->bst_magic_slot0 == state_slot0.magic) &&
(table->bst_magic_scratch == 0 ||
table->bst_magic_scratch == state_scratch.magic) &&
(table->bst_copy_done_slot0 == 0 ||
table->bst_copy_done_slot0 == state_slot0.copy_done)) {
return table->bst_status_source;
}
}
return BOOT_STATUS_SOURCE_NONE;
}
/**
* Calculates the type of swap that just completed.
*/
static int
boot_previous_swap_type(void)
{
int post_swap_type;
int i;
post_swap_type = boot_swap_type();
for (i = 0; i < BOOT_SWAP_TRANS_TABLE_SIZE; i++){
if (boot_swap_trans_table[i][1] == post_swap_type) {
return boot_swap_trans_table[i][0];
}
}
/* XXX: Temporary assert. */
assert(0);
return BOOT_SWAP_TYPE_REVERT;
}
static int
boot_read_image_header(int slot, struct image_header *out_hdr)
{
const struct flash_area *fap;
int area_id;
int rc;
area_id = flash_area_id_from_image_slot(slot);
rc = flash_area_open(area_id, &fap);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
rc = flash_area_read(fap, 0, out_hdr, sizeof *out_hdr);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
rc = 0;
done:
flash_area_close(fap);
return rc;
}
static int
boot_read_image_headers(void)
{
int rc;
int i;
for (i = 0; i < BOOT_NUM_SLOTS; i++) {
rc = boot_read_image_header(i, &boot_data.imgs[i].hdr);
if (rc != 0) {
/* If at least one header was read successfully, then the boot
* loader can attempt a boot. Failure to read any headers is a
* fatal error.
*/
if (i > 0) {
return 0;
} else {
return rc;
}
}
}
return 0;
}
static uint8_t
boot_write_sz(void)
{
uint8_t elem_sz;
uint8_t align;
/* Figure out what size to write update status update as. The size depends
* on what the minimum write size is for scratch area, active image slot.
* We need to use the bigger of those 2 values.
*/
elem_sz = hal_flash_align(boot_data.imgs[0].sectors[0].fa_device_id);
align = hal_flash_align(boot_data.scratch_sector.fa_device_id);
if (align > elem_sz) {
elem_sz = align;
}
return elem_sz;
}
static int
boot_slots_compatible(void)
{
const struct flash_area *sector0;
const struct flash_area *sector1;
int i;
/* Ensure both image slots have identical sector layouts. */
if (boot_data.imgs[0].num_sectors != boot_data.imgs[1].num_sectors) {
return 0;
}
for (i = 0; i < boot_data.imgs[0].num_sectors; i++) {
sector0 = boot_data.imgs[0].sectors + i;
sector1 = boot_data.imgs[1].sectors + i;
if (sector0->fa_size != sector1->fa_size) {
return 0;
}
}
return 1;
}
/**
* Determines the sector layout of both image slots and the scratch area.
* This information is necessary for calculating the number of bytes to erase
* and copy during an image swap. The information collected during this
* function is used to populate the boot_data global.
*/
static int
boot_read_sectors(void)
{
const struct flash_area *scratch;
int num_sectors_slot0;
int num_sectors_slot1;
int rc;
num_sectors_slot0 = BOOT_MAX_IMG_SECTORS;
rc = flash_area_to_sectors(FLASH_AREA_IMAGE_0, &num_sectors_slot0,
boot_data.imgs[0].sectors);
if (rc != 0) {
return BOOT_EFLASH;
}
/*
* Make sure that BSP specific number of sectors will not result in
* random memory clobber
*/
assert(num_sectors_slot0 <= BOOT_MAX_IMG_SECTORS);
boot_data.imgs[0].num_sectors = num_sectors_slot0;
num_sectors_slot1 = BOOT_MAX_IMG_SECTORS;
rc = flash_area_to_sectors(FLASH_AREA_IMAGE_1, &num_sectors_slot1,
boot_data.imgs[1].sectors);
if (rc != 0) {
return BOOT_EFLASH;
}
/*
* Make sure that BSP specific number of sectors will not result in
* random memory clobber
*/
assert(num_sectors_slot1 <= BOOT_MAX_IMG_SECTORS);
boot_data.imgs[1].num_sectors = num_sectors_slot1;
rc = flash_area_open(FLASH_AREA_IMAGE_SCRATCH, &scratch);
if (rc != 0) {
return BOOT_EFLASH;
}
boot_data.scratch_sector = *scratch;
boot_data.write_sz = boot_write_sz();
return 0;
}
static uint32_t
boot_status_internal_off(int idx, int state, int elem_sz)
{
int idx_sz;
idx_sz = elem_sz * BOOT_STATUS_STATE_COUNT;
return idx * idx_sz + state * elem_sz;
}
/**
* Reads the status of a partially-completed swap, if any. This is necessary
* to recover in case the boot lodaer was reset in the middle of a swap
* operation.
*/
static int
boot_read_status_bytes(const struct flash_area *fap, struct boot_status *bs)
{
uint32_t off;
uint8_t status;
int found;
int rc;
int i;
off = boot_status_off(fap);
found = 0;
for (i = 0; i < BOOT_STATUS_MAX_ENTRIES; i++) {
rc = flash_area_read(fap, off + i * boot_data.write_sz, &status, 1);
if (rc != 0) {
return BOOT_EFLASH;
}
if (status == 0xff) {
if (found) {
break;
}
} else if (!found) {
found = 1;
}
}
if (found) {
i--;
bs->idx = i / BOOT_STATUS_STATE_COUNT;
bs->state = i % BOOT_STATUS_STATE_COUNT;
}
return 0;
}
/**
* Reads the boot status from the flash. The boot status contains
* the current state of an interrupted image copy operation. If the boot
* status is not present, or it indicates that previous copy finished,
* there is no operation in progress.
*/
static int
boot_read_status(struct boot_status *bs)
{
const struct flash_area *fap;
int status_loc;
int area_id;
int rc;
memset(bs, 0, sizeof *bs);
status_loc = boot_status_source();
switch (status_loc) {
case BOOT_STATUS_SOURCE_NONE:
return 0;
case BOOT_STATUS_SOURCE_SCRATCH:
area_id = FLASH_AREA_IMAGE_SCRATCH;
break;
case BOOT_STATUS_SOURCE_SLOT0:
area_id = FLASH_AREA_IMAGE_0;
break;
default:
assert(0);
return BOOT_EBADARGS;
}
rc = flash_area_open(area_id, &fap);
if (rc != 0) {
return BOOT_EFLASH;
}
rc = boot_read_status_bytes(fap, bs);
if (rc != 0) {
return rc;
}
return 0;
}
/**
* Writes the supplied boot status to the flash file system. The boot status
* contains the current state of an in-progress image copy operation.
*
* @param bs The boot status to write.
*
* @return 0 on success; nonzero on failure.
*/
int
boot_write_status(struct boot_status *bs)
{
const struct flash_area *fap;
uint32_t off;
int area_id;
int rc;
uint8_t buf[8];
uint8_t align;
if (bs->idx == 0) {
/* Write to scratch. */
area_id = FLASH_AREA_IMAGE_SCRATCH;
} else {
/* Write to slot 0. */
area_id = FLASH_AREA_IMAGE_0;
}
rc = flash_area_open(area_id, &fap);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
off = boot_status_off(fap) +
boot_status_internal_off(bs->idx, bs->state, boot_data.write_sz);
align = hal_flash_align(fap->fa_device_id);
// ASSERT(align <= 8);
memset(buf, 0xFF, 8);
buf[0] = bs->state;
rc = flash_area_write(fap, off, buf, align);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
rc = 0;
done:
flash_area_close(fap);
return rc;
}
/*
* Validate image hash/signature in a slot.
*/
static int
boot_image_check(struct image_header *hdr, const struct flash_area *fap)
{
static void *tmpbuf;
if (!tmpbuf) {
tmpbuf = malloc(BOOT_TMPBUF_SZ);
if (!tmpbuf) {
return BOOT_ENOMEM;
}
}
if (bootutil_img_validate(hdr, fap, tmpbuf, BOOT_TMPBUF_SZ,
NULL, 0, NULL)) {
return BOOT_EBADIMAGE;
}
return 0;
}
static int
split_image_check(struct image_header *app_hdr,
const struct flash_area *app_fap,
struct image_header *loader_hdr,
const struct flash_area *loader_fap)
{
static void *tmpbuf;
uint8_t loader_hash[32];
if (!tmpbuf) {
tmpbuf = malloc(BOOT_TMPBUF_SZ);
if (!tmpbuf) {
return BOOT_ENOMEM;
}
}
if (bootutil_img_validate(loader_hdr, loader_fap, tmpbuf, BOOT_TMPBUF_SZ,
NULL, 0, loader_hash)) {
return BOOT_EBADIMAGE;
}
if (bootutil_img_validate(app_hdr, app_fap, tmpbuf, BOOT_TMPBUF_SZ,
loader_hash, 32, NULL)) {
return BOOT_EBADIMAGE;
}
return 0;
}
static int
boot_validate_slot(int slot)
{
const struct flash_area *fap;
int rc;
if (boot_data.imgs[slot].hdr.ih_magic == 0xffffffff ||
boot_data.imgs[slot].hdr.ih_flags & IMAGE_F_NON_BOOTABLE) {
/* No bootable image in slot 1; continue booting from slot 0. */
return -1;
}
/* Image in slot 1 is invalid. Erase the image and continue booting
* from slot 0.
*/
rc = flash_area_open(flash_area_id_from_image_slot(slot), &fap);
if (rc != 0) {
return BOOT_EFLASH;
}
if (boot_data.imgs[slot].hdr.ih_magic != IMAGE_MAGIC ||
boot_image_check(&boot_data.imgs[slot].hdr, fap) != 0) {
if (slot != 0) {
/* Image in slot 1 is invalid. Erase the image and continue booting
* from slot 0.
*/
flash_area_erase(fap, 0, fap->fa_size);
}
return -1;
}
flash_area_close(fap);
/* Image in slot 1 is valid. */
return 0;
}
/**
* Determines which swap operation to perform, if any. If it is determined
* that a swap operation is required, the image in the second slot is checked
* for validity. If the image in the second slot is invalid, it is erased, and
* a swap type of "none" is indicated.
*
* @return The type of swap to perform (BOOT_SWAP_TYPE...)
*/
static int
boot_validated_swap_type(void)
{
int swap_type;
int rc;
swap_type = boot_swap_type();
if (swap_type == BOOT_SWAP_TYPE_NONE) {
/* Continue using slot 0. */
return BOOT_SWAP_TYPE_NONE;
}
/* Boot loader wants to switch to slot 1. Ensure image is valid. */
rc = boot_validate_slot(1);
if (rc != 0) {
return BOOT_SWAP_TYPE_FAIL;
}
return swap_type;
}
/**
* Calculates the number of sectors the scratch area can contain. A "last"
* source sector is specified because images are copied backwards in flash
* (final index to index number 0).
*
* @param last_sector_idx The index of the last source sector
* (inclusive).
* @param out_first_sector_idx The index of the first source sector
* (inclusive) gets written here.
*
* @return The number of bytes comprised by the
* [first-sector, last-sector] range.
*/
static uint32_t
boot_copy_sz(int last_sector_idx, int *out_first_sector_idx)
{
uint32_t new_sz;
uint32_t sz;
int i;
sz = 0;
for (i = last_sector_idx; i >= 0; i--) {
new_sz = sz + boot_data.imgs[0].sectors[i].fa_size;
if (new_sz > boot_data.scratch_sector.fa_size) {
break;
}
sz = new_sz;
}
/* i currently refers to a sector that doesn't fit or it is -1 because all
* sectors have been processed. In both cases, exclude sector i.
*/
*out_first_sector_idx = i + 1;
return sz;
}
/**
* Erases a region of flash.
*
* @param flash_area_idx The ID of the flash area containing the region
* to erase.
* @param off The offset within the flash area to start the
* erase.
* @param sz The number of bytes to erase.
*
* @return 0 on success; nonzero on failure.
*/
static int
boot_erase_sector(int flash_area_id, uint32_t off, uint32_t sz)
{
const struct flash_area *fap;
int rc;
rc = flash_area_open(flash_area_id, &fap);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
rc = flash_area_erase(fap, off, sz);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
rc = 0;
done:
flash_area_close(fap);
return rc;
}
/**
* Copies the contents of one flash region to another. You must erase the
* destination region prior to calling this function.
*
* @param flash_area_id_src The ID of the source flash area.
* @param flash_area_id_dst The ID of the destination flash area.
* @param off_src The offset within the source flash area to
* copy from.
* @param off_dst The offset within the destination flash area to
* copy to.
* @param sz The number of bytes to copy.
*
* @return 0 on success; nonzero on failure.
*/
static int
boot_copy_sector(int flash_area_id_src, int flash_area_id_dst,
uint32_t off_src, uint32_t off_dst, uint32_t sz)
{
const struct flash_area *fap_src;
const struct flash_area *fap_dst;
uint32_t bytes_copied;
int chunk_sz;
int rc;
static uint8_t buf[1024];
fap_src = NULL;
fap_dst = NULL;
rc = flash_area_open(flash_area_id_src, &fap_src);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
rc = flash_area_open(flash_area_id_dst, &fap_dst);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
bytes_copied = 0;
while (bytes_copied < sz) {
if (sz - bytes_copied > sizeof buf) {
chunk_sz = sizeof buf;
} else {
chunk_sz = sz - bytes_copied;
}
rc = flash_area_read(fap_src, off_src + bytes_copied, buf, chunk_sz);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
rc = flash_area_write(fap_dst, off_dst + bytes_copied, buf, chunk_sz);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
bytes_copied += chunk_sz;
}
rc = 0;
done:
flash_area_close(fap_src);
flash_area_close(fap_dst);
return rc;
}
/**
* Swaps the contents of two flash regions within the two image slots.
*
* @param idx The index of the first sector in the range of
* sectors being swapped.
* @param sz The number of bytes to swap.
* @param bs The current boot status. This struct gets
* updated according to the outcome.
*
* @return 0 on success; nonzero on failure.
*/
static int
boot_swap_sectors(int idx, uint32_t sz, struct boot_status *bs)
{
uint32_t copy_sz;
uint32_t img_off;
int rc;
/* Calculate offset from start of image area. */
img_off = boot_data.imgs[0].sectors[idx].fa_off -
boot_data.imgs[0].sectors[0].fa_off;
if (bs->state == 0) {
rc = boot_erase_sector(FLASH_AREA_IMAGE_SCRATCH, 0, sz);
if (rc != 0) {
return rc;
}
rc = boot_copy_sector(FLASH_AREA_IMAGE_1, FLASH_AREA_IMAGE_SCRATCH,
img_off, 0, sz);
if (rc != 0) {
return rc;
}
bs->state = 1;
(void)boot_write_status(bs);
}
if (bs->state == 1) {
rc = boot_erase_sector(FLASH_AREA_IMAGE_1, img_off, sz);
if (rc != 0) {
return rc;
}
copy_sz = sz;
if (boot_data.imgs[0].sectors[idx].fa_off + sz >=
boot_data.imgs[1].sectors[0].fa_off) {
/* This is the end of the area. Don't copy the image state into
* slot 1.
*/
copy_sz -= boot_trailer_sz(boot_data.write_sz);
}
rc = boot_copy_sector(FLASH_AREA_IMAGE_0, FLASH_AREA_IMAGE_1,
img_off, img_off, copy_sz);
if (rc != 0) {
return rc;
}
bs->state = 2;
(void)boot_write_status(bs);
}
if (bs->state == 2) {
rc = boot_erase_sector(FLASH_AREA_IMAGE_0, img_off, sz);
if (rc != 0) {
return rc;
}
rc = boot_copy_sector(FLASH_AREA_IMAGE_SCRATCH, FLASH_AREA_IMAGE_0,
0, img_off, sz);
if (rc != 0) {
return rc;
}
bs->idx++;
bs->state = 0;
(void)boot_write_status(bs);
}
return 0;
}
/**
* Swaps the two images in flash. If a prior copy operation was interrupted
* by a system reset, this function completes that operation.
*
* @param bs The current boot status. This function reads
* this struct to determine if it is resuming
* an interrupted swap operation. This
* function writes the updated status to this
* function on return.
*
* @return 0 on success; nonzero on failure.
*/
static int
boot_copy_image(struct boot_status *bs)
{
uint32_t sz;
int first_sector_idx;
int last_sector_idx;
int swap_idx;
swap_idx = 0;
last_sector_idx = boot_data.imgs[0].num_sectors - 1;
while (last_sector_idx >= 0) {
/* Pet the watchdog, in case it is still enabled after a soft reset. */
hal_watchdog_tickle();
sz = boot_copy_sz(last_sector_idx, &first_sector_idx);
if (swap_idx >= bs->idx) {
boot_swap_sectors(first_sector_idx, sz, bs);
}
last_sector_idx = first_sector_idx - 1;
swap_idx++;
}
return 0;
}
/**
* Marks a test image in slot 0 as fully copied.
*/
static int
boot_finalize_test_swap(void)
{
const struct flash_area *fap;
int rc;
rc = flash_area_open(FLASH_AREA_IMAGE_0, &fap);
if (rc != 0) {
return BOOT_EFLASH;
}
rc = boot_write_copy_done(fap);
if (rc != 0) {
return rc;
}
return 0;
}
/**
* Marks a reverted image in slot 0 as confirmed. This is necessary to ensure
* the status bytes from the image revert operation don't get processed on a
* subsequent boot.
*/
static int
boot_finalize_revert_swap(void)
{
const struct flash_area *fap;
struct boot_swap_state state_slot0;
int rc;
rc = flash_area_open(FLASH_AREA_IMAGE_0, &fap);
if (rc != 0) {
return BOOT_EFLASH;
}
rc = boot_read_swap_state(fap, &state_slot0);
if (rc != 0) {
return BOOT_EFLASH;
}
if (state_slot0.magic == BOOT_MAGIC_UNSET) {
rc = boot_write_magic(fap);
if (rc != 0) {
return rc;
}
}
if (state_slot0.copy_done == 0xff) {
rc = boot_write_copy_done(fap);
if (rc != 0) {
return rc;
}
}
if (state_slot0.image_ok == 0xff) {
rc = boot_write_image_ok(fap);
if (rc != 0) {
return rc;
}
}
return 0;
}
/**
* Performs an image swap if one is required.
*
* @param out_swap_type On success, the type of swap performed gets
* written here.
*
* @return 0 on success; nonzero on failure.
*/
static int
boot_swap_if_needed(int *out_swap_type)
{
struct boot_status bs;
int swap_type;
int rc;
/* Determine if we rebooted in the middle of an image swap
* operation.
*/
rc = boot_read_status(&bs);
if (rc != 0) {
return rc;
}
/* If a partial swap was detected, complete it. */
if (bs.idx != 0 || bs.state != 0) {
rc = boot_copy_image(&bs);
assert(rc == 0);
/* Extrapolate the type of the partial swap. We need this
* information to know how to mark the swap complete in flash.
*/
swap_type = boot_previous_swap_type();
} else {
swap_type = boot_validated_swap_type();
switch (swap_type) {
case BOOT_SWAP_TYPE_TEST:
case BOOT_SWAP_TYPE_PERM:
case BOOT_SWAP_TYPE_REVERT:
rc = boot_copy_image(&bs);
assert(rc == 0);
break;
}
}
*out_swap_type = swap_type;
return 0;
}
/**
* Prepares the booting process. This function moves images around in flash as
* appropriate, and tells you what address to boot from.
*
* @param rsp On success, indicates how booting should occur.
*
* @return 0 on success; nonzero on failure.
*/
int
boot_go(struct boot_rsp *rsp)
{
int swap_type;
int slot;
int rc;
/* The array of slot sectors are defined here (as opposed to file scope) so
* that they don't get allocated for non-boot-loader apps. This is
* necessary because the gcc option "-fdata-sections" doesn't seem to have
* any effect in older gcc versions (e.g., 4.8.4).
*/
static struct flash_area slot0_sectors[BOOT_MAX_IMG_SECTORS];
static struct flash_area slot1_sectors[BOOT_MAX_IMG_SECTORS];
boot_data.imgs[0].sectors = slot0_sectors;
boot_data.imgs[1].sectors = slot1_sectors;
/* Determine the sector layout of the image slots and scratch area. */
rc = boot_read_sectors();
if (rc != 0) {
return rc;
}
/* Attempt to read an image header from each slot. */
rc = boot_read_image_headers();
if (rc != 0) {
return rc;
}
/* If the image slots aren't compatible, no swap is possible. Just boot
* into slot 0.
*/
if (boot_slots_compatible()) {
rc = boot_swap_if_needed(&swap_type);
if (rc != 0) {
return rc;
}
} else {
swap_type = BOOT_SWAP_TYPE_NONE;
}
switch (swap_type) {
case BOOT_SWAP_TYPE_NONE:
#if MYNEWT_VAL(BOOTUTIL_VALIDATE_SLOT0)
rc = boot_validate_slot(0);
if (rc != 0) {
return BOOT_EBADIMAGE;
}
#endif
slot = 0;
break;
case BOOT_SWAP_TYPE_TEST:
case BOOT_SWAP_TYPE_PERM:
slot = 1;
boot_finalize_test_swap();
break;
case BOOT_SWAP_TYPE_REVERT:
slot = 1;
boot_finalize_revert_swap();
break;
case BOOT_SWAP_TYPE_FAIL:
/* The image in slot 1 was invalid and is now erased. Ensure we don't
* try to boot into it again on the next reboot. Do this by pretending
* we just reverted back to slot 0.
*/
slot = 0;
boot_finalize_revert_swap();
break;
default:
assert(0);
slot = 0;
break;
}
/* Always boot from the primary slot. */
rsp->br_flash_id = boot_data.imgs[0].sectors[0].fa_device_id;
rsp->br_image_addr = boot_data.imgs[0].sectors[0].fa_off;
rsp->br_hdr = &boot_data.imgs[slot].hdr;
return 0;
}
int
split_go(int loader_slot, int split_slot, void **entry)
{
const struct flash_area *loader_fap;
const struct flash_area *app_fap;
uintptr_t entry_val;
int loader_flash_id;
int app_flash_id;
int rc;
app_fap = NULL;
loader_fap = NULL;
rc = boot_read_image_headers();
if (rc != 0) {
goto done;
}
app_flash_id = flash_area_id_from_image_slot(split_slot);
rc = flash_area_open(app_flash_id, &app_fap);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
loader_flash_id = flash_area_id_from_image_slot(loader_slot);
rc = flash_area_open(loader_flash_id, &loader_fap);
if (rc != 0) {
rc = BOOT_EFLASH;
goto done;
}
/* Don't check the bootable image flag because we could really call a
* bootable or non-bootable image. Just validate that the image check
* passes which is distinct from the normal check.
*/
rc = split_image_check(&boot_data.imgs[split_slot].hdr,
app_fap,
&boot_data.imgs[loader_slot].hdr,
loader_fap);
if (rc != 0) {
rc = SPLIT_GO_NON_MATCHING;
goto done;
}
entry_val = app_fap->fa_off + boot_data.imgs[split_slot].hdr.ih_hdr_size;
*entry = (void *) entry_val;
rc = SPLIT_GO_OK;
done:
flash_area_close(app_fap);
flash_area_close(loader_fap);
return rc;
}