blob: d0ae8ad6582550ba2a57e14e9b25100fab272533 [file] [log] [blame] [view]
<!--- Licensed to the Apache Software Foundation (ASF) under one -->
<!--- or more contributor license agreements. See the NOTICE file -->
<!--- distributed with this work for additional information -->
<!--- regarding copyright ownership. The ASF licenses this file -->
<!--- to you under the Apache License, Version 2.0 (the -->
<!--- "License"); you may not use this file except in compliance -->
<!--- with the License. You may obtain a copy of the License at -->
<!--- http://www.apache.org/licenses/LICENSE-2.0 -->
<!--- Unless required by applicable law or agreed to in writing, -->
<!--- software distributed under the License is distributed on an -->
<!--- "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -->
<!--- KIND, either express or implied. See the License for the -->
<!--- specific language governing permissions and limitations -->
<!--- under the License. -->
## Wide and Deep Learning
The example demonstrates how to train [wide and deep model](https://arxiv.org/abs/1606.07792). The [Census Income Data Set](https://archive.ics.uci.edu/ml/datasets/Census+Income) that this example uses for training is hosted by the [UC Irvine Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/). Tricks of feature engineering are adapted from tensorflow's [wide and deep tutorial](https://github.com/tensorflow/models/tree/master/official/wide_deep).
The final accuracy should be around 85%.
For training:
- `python train.py`
For inference:
- `python inference.py`