| # Optimizers |
| |
| Says, you have the parameter `W` inited for your model and |
| got its gradient stored as `∇` (perhaps from AutoGrad APIs). |
| Here is minimal snippet of getting your parameter `W` baked by `SGD`. |
| |
| ```@repl |
| using MXNet |
| |
| opt = SGD(η = 10) |
| decend! = getupdater(opt) |
| |
| W = NDArray(Float32[1, 2, 3, 4]); |
| ∇ = NDArray(Float32[.1, .2, .3, .4]); |
| |
| decend!(1, ∇, W) |
| ``` |
| |
| ```@autodocs |
| Modules = [MXNet.mx, MXNet.mx.LearningRate, MXNet.mx.Momentum] |
| Pages = ["optimizer.jl"] |
| ``` |
| |
| ## Built-in optimizers |
| |
| ### Stochastic Gradient Descent |
| ```@autodocs |
| Modules = [MXNet.mx] |
| Pages = ["optimizers/sgd.jl"] |
| ``` |
| |
| ### ADAM |
| ```@autodocs |
| Modules = [MXNet.mx] |
| Pages = ["optimizers/adam.jl"] |
| ``` |
| |
| ### AdaGrad |
| ```@autodocs |
| Modules = [MXNet.mx] |
| Pages = ["optimizers/adagrad.jl"] |
| ``` |
| |
| ### AdaDelta |
| ```@autodocs |
| Modules = [MXNet.mx] |
| Pages = ["optimizers/adadelta.jl"] |
| ``` |
| |
| ### AdaMax |
| ```@autodocs |
| Modules = [MXNet.mx] |
| Pages = ["optimizers/adamax.jl"] |
| ``` |
| |
| ### RMSProp |
| ```@autodocs |
| Modules = [MXNet.mx] |
| Pages = ["optimizers/rmsprop.jl"] |
| ``` |
| |
| ### Nadam |
| ```@autodocs |
| Modules = [MXNet.mx] |
| Pages = ["optimizers/nadam.jl"] |
| ``` |