| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| """Performance benchmark tests for MXNet NDArray Unary Operations. |
| 1. Operators are automatically fetched from MXNet operator registry. |
| 2. Default Inputs are generated. See rules/default_params.py. You can override the default values. |
| |
| Below 54 unary Operators are covered: |
| |
| ['BlockGrad', 'Flatten', 'abs', 'arccos', 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctanh', |
| 'argmax_channel', 'cbrt', 'ceil', 'cos', 'cosh', 'degrees', 'erf', 'erfinv', 'exp', 'expm1', 'fix', 'flatten', |
| 'floor', 'gamma', 'gammaln', 'identity', 'log', 'log10', 'log1p', 'log2', 'logical_not', 'make_loss', 'negative', |
| 'ones_like', 'radians', 'rcbrt', 'reciprocal', 'relu', 'rint', 'round', 'rsqrt', 'shuffle', 'sigmoid', 'sign', |
| 'sin', 'sinh', 'size_array', 'softsign', 'sqrt', 'square', 'stop_gradient', 'tan', 'tanh', 'trunc', 'zeros_like'] |
| |
| """ |
| |
| import mxnet as mx |
| |
| from benchmark.opperf.utils.op_registry_utils import get_all_unary_operators |
| from benchmark.opperf.utils.benchmark_utils import run_op_benchmarks |
| |
| from benchmark.opperf.utils.benchmark_utils import run_performance_test |
| from benchmark.opperf.utils.common_utils import merge_map_list |
| from benchmark.opperf.rules.default_params import MX_OP_MODULE |
| |
| def run_mx_unary_operators_benchmarks(ctx=mx.cpu(), dtype='float32', profiler='native', int64_tensor='off', warmup=25, runs=100): |
| """Runs benchmarks with the given context, precision (dtype), and input data size (int64_tensor) for all the unary |
| operators in MXNet. |
| |
| Parameters |
| ---------- |
| ctx: mx.ctx |
| Context to run benchmarks |
| dtype: str, default 'float32' |
| Precision to use for benchmarks |
| profiler: str, default 'native' |
| Type of Profiler to use (native/python) |
| int64_tensor: str, default 'off' |
| Input tensor size to use for tests (if on, dimensions >= 2**32) |
| warmup: int, default 25 |
| Number of times to run for warmup |
| runs: int, default 100 |
| Number of runs to capture benchmark results |
| |
| Returns |
| ------- |
| Dictionary of results. Key -> Name of the operator, Value -> Benchmark results. |
| |
| """ |
| |
| standard_inputs = [{"args": [(1024, 1024)], |
| "num_outputs":1}, |
| {"args": [(10000, 1)], |
| "num_outputs":1}] |
| int64_tensor_inputs = [{"args": [(2**32, 1)], |
| "num_outputs":1}] |
| |
| if int64_tensor == 'on': |
| inputs = int64_tensor_inputs |
| else: |
| inputs = standard_inputs |
| |
| # Run amp_multicast as it needs data as positional argument |
| amp_multicast_benchmark = run_performance_test([getattr(MX_OP_MODULE, "amp_multicast")], |
| run_backward=True, |
| dtype=dtype, |
| ctx=ctx, |
| profiler=profiler, |
| inputs=inputs, |
| warmup=warmup, |
| runs=runs) |
| |
| # Fetch all Unary Operators |
| mx_unary_broadcast_ops = get_all_unary_operators() |
| |
| # Run benchmarks |
| mx_unary_op_results = run_op_benchmarks(mx_unary_broadcast_ops, dtype, ctx, profiler, int64_tensor, warmup, runs) |
| return merge_map_list(amp_multicast_benchmark + [mx_unary_op_results]) |