blob: 53cab57cfe15c472dd5f588cb080d772e7a45c2d [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Performance benchmark tests for MXNet NDArray Unary Operations.
1. Operators are automatically fetched from MXNet operator registry.
2. Default Inputs are generated. See rules/default_params.py. You can override the default values.
Below 54 unary Operators are covered:
['BlockGrad', 'Flatten', 'abs', 'arccos', 'arccosh', 'arcsin', 'arcsinh', 'arctan', 'arctanh',
'argmax_channel', 'cbrt', 'ceil', 'cos', 'cosh', 'degrees', 'erf', 'erfinv', 'exp', 'expm1', 'fix', 'flatten',
'floor', 'gamma', 'gammaln', 'identity', 'log', 'log10', 'log1p', 'log2', 'logical_not', 'make_loss', 'negative',
'ones_like', 'radians', 'rcbrt', 'reciprocal', 'relu', 'rint', 'round', 'rsqrt', 'shuffle', 'sigmoid', 'sign',
'sin', 'sinh', 'size_array', 'softsign', 'sqrt', 'square', 'stop_gradient', 'tan', 'tanh', 'trunc', 'zeros_like']
"""
import mxnet as mx
from benchmark.opperf.utils.op_registry_utils import get_all_unary_operators
from benchmark.opperf.utils.benchmark_utils import run_op_benchmarks
from benchmark.opperf.utils.benchmark_utils import run_performance_test
from benchmark.opperf.utils.common_utils import merge_map_list
from benchmark.opperf.rules.default_params import MX_OP_MODULE
def run_mx_unary_operators_benchmarks(ctx=mx.cpu(), dtype='float32', profiler='native', int64_tensor='off', warmup=25, runs=100):
"""Runs benchmarks with the given context, precision (dtype), and input data size (int64_tensor) for all the unary
operators in MXNet.
Parameters
----------
ctx: mx.ctx
Context to run benchmarks
dtype: str, default 'float32'
Precision to use for benchmarks
profiler: str, default 'native'
Type of Profiler to use (native/python)
int64_tensor: str, default 'off'
Input tensor size to use for tests (if on, dimensions >= 2**32)
warmup: int, default 25
Number of times to run for warmup
runs: int, default 100
Number of runs to capture benchmark results
Returns
-------
Dictionary of results. Key -> Name of the operator, Value -> Benchmark results.
"""
standard_inputs = [{"args": [(1024, 1024)],
"num_outputs":1},
{"args": [(10000, 1)],
"num_outputs":1}]
int64_tensor_inputs = [{"args": [(2**32, 1)],
"num_outputs":1}]
if int64_tensor == 'on':
inputs = int64_tensor_inputs
else:
inputs = standard_inputs
# Run amp_multicast as it needs data as positional argument
amp_multicast_benchmark = run_performance_test([getattr(MX_OP_MODULE, "amp_multicast")],
run_backward=True,
dtype=dtype,
ctx=ctx,
profiler=profiler,
inputs=inputs,
warmup=warmup,
runs=runs)
# Fetch all Unary Operators
mx_unary_broadcast_ops = get_all_unary_operators()
# Run benchmarks
mx_unary_op_results = run_op_benchmarks(mx_unary_broadcast_ops, dtype, ctx, profiler, int64_tensor, warmup, runs)
return merge_map_list(amp_multicast_benchmark + [mx_unary_op_results])