blob: 33b320af9e3274651f0a20ae06954a11dda497a2 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import mxnet as mx
from benchmark.opperf.utils.op_registry_utils import get_all_nn_activation_operators
from benchmark.opperf.utils.benchmark_utils import run_op_benchmarks
"""Performance benchmark tests for MXNet NDArray Activation Operators.
1. LeakyReLU
1.1 elu
1.2 selu
1.3 leaky
1.4 gelu
2. hard_sigmoid
3. Softmax
4. SoftmaxActivation
5. softmax
6. log_softmax
7. softmin
8. Activation
8.1 relu
8.2 sigmoid
8.3 log_sigmoid
8.4 mish
8.5 softrelu
8.6 softsign
8.7 tanh
"""
def run_activation_operators_benchmarks(ctx=mx.cpu(), dtype='float32', profiler='native', int64_tensor='off', warmup=25, runs=100):
"""Runs benchmarks with the given context, precision (dtype), and input data size (int64_tensor) for all the activation
operators (relu, sigmoid, softmax) in MXNet.
Parameters
----------
ctx: mx.ctx
Context to run benchmarks
dtype: str, default 'float32'
Precision to use for benchmarks
profiler: str, default 'native'
Module to use for tracking benchmark excecution time
int64_tensor: str, default 'off'
Input tensor size to use for tests (if on, dimensions >= 2**32)
warmup: int, default 25
Number of times to run for warmup
runs: int, default 100
Number of runs to capture benchmark results
Returns
-------
Dictionary of results. Key -> Name of the operator, Value -> Benchmark results.
"""
# Fetch all NN Activation Operators
mx_activation_ops = get_all_nn_activation_operators()
# Run benchmarks
mx_activation_op_results = run_op_benchmarks(mx_activation_ops, dtype, ctx, profiler, int64_tensor, warmup, runs)
return mx_activation_op_results