blob: 4444219e6054945275c7e5c9b2222c18a44105b3 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Performance benchmark tests for MXNet NDArray Binary Operations - covers both broadcast and element_wise.
1. Operators are automatically fetched from MXNet operator registry.
2. Default Inputs are generated. See rules/default_params.py. You can override the default values.
Below 20 binary broadcast Operators are covered:
['broadcast_add', 'broadcast_div', 'broadcast_equal', 'broadcast_greater', 'broadcast_greater_equal',
'broadcast_hypot', 'broadcast_lesser', 'broadcast_lesser_equal', 'broadcast_logical_and',
'broadcast_logical_or', 'broadcast_logical_xor', 'broadcast_maximum', 'broadcast_minimum',
'broadcast_minus', 'broadcast_mod', 'broadcast_mul', 'broadcast_not_equal', 'broadcast_plus',
'broadcast_power', 'broadcast_sub']
Below 4 binary element_wise Operators are covered:
['elemwise_add', 'elemwise_mul', 'elemwise_sub', 'elemwise_div']
"""
import mxnet as mx
from benchmark.opperf.utils.benchmark_utils import run_op_benchmarks
from benchmark.opperf.utils.op_registry_utils import get_all_broadcast_binary_operators, \
get_all_elemen_wise_binary_operators, get_all_misc_binary_operators
def run_mx_binary_misc_operators_benchmarks(ctx=mx.cpu(), dtype='float32', profiler='native', int64_tensor='off', warmup=25, runs=100):
"""Runs benchmarks with the given context, precision (dtype), and input data size (int64_tensor) for all the miscellaneous
binary operators in MXNet.
Parameters
----------
ctx: mx.ctx
Context to run benchmarks
dtype: str, default 'float32'
Precision to use for benchmarks
profiler: str, default 'native'
Type of Profiler to use (native/python)
int64_tensor: str, default 'off'
Input tensor size to use for tests (if on, dimensions >= 2**32)
warmup: int, default 25
Number of times to run for warmup
runs: int, default 100
Number of runs to capture benchmark results
Returns
-------
Dictionary of results. Key -> Name of the operator, Value -> Benchmark results.
"""
# Fetch all Miscellaneous Binary Operators
mx_binary_misc_ops = get_all_misc_binary_operators()
# Run benchmarks
mx_binary_op_results = run_op_benchmarks(mx_binary_misc_ops, dtype, ctx, profiler, int64_tensor, warmup, runs)
return mx_binary_op_results
def run_mx_binary_broadcast_operators_benchmarks(ctx=mx.cpu(), dtype='float32', profiler='native', int64_tensor='off', warmup=25, runs=100):
"""Runs benchmarks with the given context, precision (dtype), and input data size (int64_tensor) for all the binary
broadcast operators in MXNet.
Parameters
----------
ctx: mx.ctx
Context to run benchmarks
dtype: str, default 'float32'
Precision to use for benchmarks
profiler: str, default 'native'
Type of Profiler to use (native/python)
int64_tensor: str, default 'off'
Input tensor size to use for tests (if on, dimensions >= 2**32)
warmup: int, default 25
Number of times to run for warmup
runs: int, default 100
Number of runs to capture benchmark results
Returns
-------
Dictionary of results. Key -> Name of the operator, Value -> Benchmark results.
"""
# Fetch all Binary Broadcast Operators
mx_binary_broadcast_ops = get_all_broadcast_binary_operators()
# Run benchmarks
mx_binary_op_results = run_op_benchmarks(mx_binary_broadcast_ops, dtype, ctx, profiler, int64_tensor, warmup, runs)
return mx_binary_op_results
def run_mx_binary_element_wise_operators_benchmarks(ctx=mx.cpu(), dtype='float32', profiler='native', int64_tensor='off', warmup=25, runs=100):
"""Runs benchmarks with the given context, precision (dtype), and input data size (int64_tensor) for all the binary
element_wise operators in MXNet.
Parameters
----------
ctx: mx.ctx
Context to run benchmarks
dtype: str, default 'float32'
Precision to use for benchmarks
profiler: str, default 'native'
Type of Profiler to use (native/python)
int64_tensor: str, default 'off'
Input tensor size to use for tests (if on, dimensions >= 2**32)
warmup: int, default 10
Number of times to run for warmup
runs: int, default 50
Number of runs to capture benchmark results
Returns
-------
Dictionary of results. Key -> Name of the operator, Value -> Benchmark results.
"""
# Fetch all Binary Element_wise Operators
mx_binary_element_wise_ops = get_all_elemen_wise_binary_operators()
# Run benchmarks
mx_binary_op_results = run_op_benchmarks(mx_binary_element_wise_ops, dtype, ctx, profiler, int64_tensor, warmup, runs)
return mx_binary_op_results