blob: c2b1dd2159375de2f9d5e99691d844b593a0e4e5 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file onnx_to_tensorrt.h
* \brief TensorRT integration with the MXNet executor
* \author Marek Kolodziej, Clement Fuji Tsang
*/
#ifndef MXNET_OPERATOR_SUBGRAPH_TENSORRT_ONNX_TO_TENSORRT_H_
#define MXNET_OPERATOR_SUBGRAPH_TENSORRT_ONNX_TO_TENSORRT_H_
#if MXNET_USE_TENSORRT
#include <onnx-tensorrt/NvOnnxParser.h>
#include <NvInfer.h>
#include <fstream>
#include <memory>
#include <iostream>
#include <sstream>
#include <string>
#include <ctime>
#include <tuple>
namespace onnx_to_tensorrt {
struct InferDeleter {
template <typename T>
void operator()(T* obj) const {
if (obj) {
obj->destroy();
}
}
};
template <typename T>
using unique_ptr = std::unique_ptr<T, InferDeleter>;
template <typename T>
inline unique_ptr<T> InferObject(T* obj) {
if (!obj) {
throw std::runtime_error("Failed to create object");
}
return unique_ptr<T>(obj, InferDeleter());
}
class TRT_Logger : public nvinfer1::ILogger {
nvinfer1::ILogger::Severity _verbosity;
std::ostream* _ostream;
public:
TRT_Logger(Severity verbosity = Severity::kWARNING, std::ostream& ostream = std::cout) // NOLINT
: _verbosity(verbosity), _ostream(&ostream) {}
void log(Severity severity, const char* msg) override {
if (severity <= _verbosity) {
time_t rawtime = std::time(0);
char buf[256];
strftime(&buf[0], 256, "%Y-%m-%d %H:%M:%S", std::gmtime(&rawtime));
const char* sevstr = (severity == Severity::kINTERNAL_ERROR ? " BUG"
: severity == Severity::kERROR ? " ERROR"
: severity == Severity::kWARNING ? "WARNING"
: severity == Severity::kINFO ? " INFO"
: "UNKNOWN");
(*_ostream) << "[" << buf << " " << sevstr << "] " << msg << std::endl;
}
}
};
std::tuple<unique_ptr<nvinfer1::ICudaEngine>,
unique_ptr<nvonnxparser::IParser>,
std::unique_ptr<TRT_Logger> >
onnxToTrtCtx(const std::string& onnx_model,
int32_t max_batch_size = 32,
size_t max_workspace_size = 1L << 30,
nvinfer1::ILogger::Severity verbosity = nvinfer1::ILogger::Severity::kWARNING,
bool debug_builder = false);
} // namespace onnx_to_tensorrt
#endif // MXNET_USE_TENSORRT
#endif // MXNET_OPERATOR_SUBGRAPH_TENSORRT_ONNX_TO_TENSORRT_H_