blob: f4fadaa238a889e4740993fcf8c26dd312016c10 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file krprod.cc
* \brief Operator registration for Khatri-Rao product
* \author Chris Swierczewski
*/
#include <mshadow/tensor.h>
#include <mxnet/op_attr_types.h>
#include <mxnet/operator_util.h>
#include <vector>
#include <string>
#include <algorithm>
#include "../mshadow_op.h"
#include "../mxnet_op.h"
#include "../operator_common.h"
#include "../elemwise_op_common.h"
#include "../../ndarray/ndarray_function.h"
#include "krprod.h"
namespace mxnet {
namespace op {
inline bool KhatriRaoShape(const nnvm::NodeAttrs& attrs,
mxnet::ShapeVector* in_attrs,
mxnet::ShapeVector* out_attrs) {
CHECK_EQ(out_attrs->size(), 1);
CHECK_GE(in_attrs->size(), 1);
// all input and output matrices must have the same number of rows/columns
// (when inputs_transposed is set to true/false)
int num_columns = static_cast<int>((*in_attrs)[0][1]);
int num_rows = 1;
for (const mxnet::TShape& attr_shape : (*in_attrs)) {
CHECK_EQ(num_columns, static_cast<int>(attr_shape[1]));
num_rows *= attr_shape[0];
}
SHAPE_ASSIGN_CHECK(*out_attrs, 0, Shape2(num_rows, num_columns));
return true;
}
struct KhatriRaoParam : public dmlc::Parameter<KhatriRaoParam> {
int num_args;
bool row_wise = false;
DMLC_DECLARE_PARAMETER(KhatriRaoParam) {
DMLC_DECLARE_FIELD(num_args).set_lower_bound(1).describe("Number of input matrices.");
}
};
DMLC_REGISTER_PARAMETER(KhatriRaoParam);
NNVM_REGISTER_OP(khatri_rao)
.describe(R"code(Computes the Khatri-Rao product of the input matrices.
Given a collection of :math:`n` input matrices,
.. math::
A_1 \in \mathbb{R}^{M_1 \times M}, \ldots, A_n \in \mathbb{R}^{M_n \times N},
the (column-wise) Khatri-Rao product is defined as the matrix,
.. math::
X = A_1 \otimes \cdots \otimes A_n \in \mathbb{R}^{(M_1 \cdots M_n) \times N},
where the :math:`k` th column is equal to the column-wise outer product
:math:`{A_1}_k \otimes \cdots \otimes {A_n}_k` where :math:`{A_i}_k` is the kth
column of the ith matrix.
Example::
>>> A = mx.nd.array([[1, -1],
>>> [2, -3]])
>>> B = mx.nd.array([[1, 4],
>>> [2, 5],
>>> [3, 6]])
>>> C = mx.nd.khatri_rao(A, B)
>>> print(C.asnumpy())
[[ 1. -4.]
[ 2. -5.]
[ 3. -6.]
[ 2. -12.]
[ 4. -15.]
[ 6. -18.]]
)code" ADD_FILELINE)
.set_attr_parser(ParamParser<KhatriRaoParam>)
.set_num_inputs([](const nnvm::NodeAttrs& attrs) {
uint32_t ret = dmlc::get<KhatriRaoParam>(attrs.parsed).num_args;
return ret;
})
.set_num_outputs(1)
.set_attr<mxnet::FInferShape>("FInferShape", KhatriRaoShape)
.set_attr<nnvm::FInferType>(
"FInferType",
[](const nnvm::NodeAttrs& attrs, std::vector<int>* in_attrs, std::vector<int>* out_attrs) {
return ElemwiseAttr<int, type_is_none, type_assign, true, type_string>(
attrs, in_attrs, out_attrs, -1);
})
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
uint32_t num_args =
dmlc::get<KhatriRaoParam>(attrs.parsed).num_args;
std::vector<std::string> ret;
for (uint32_t i = 0; i < num_args; ++i)
ret.push_back(std::string("arg") + std::to_string(i));
return ret;
})
.set_attr<FCompute>("FCompute<cpu>", KhatriRaoCompute<cpu>)
.set_attr<std::string>("key_var_num_args", "num_args")
.add_argument("args", "NDArray-or-Symbol[]", "Positional input matrices");
} // namespace op
} // namespace mxnet