[v1.x][FEATURE] Add MKLDNN Deconvolution 1D and 3D support (#20137) (#20726)
Co-authored-by: Paweł Głomski <pawel.glomski@intel.com>
diff --git a/src/operator/nn/deconvolution-inl.h b/src/operator/nn/deconvolution-inl.h
index ecb405d..5dc1fe6 100644
--- a/src/operator/nn/deconvolution-inl.h
+++ b/src/operator/nn/deconvolution-inl.h
@@ -219,7 +219,11 @@
using namespace mshadow::expr;
if (param_.kernel.ndim() > 2) {
- LOG(FATAL) << "If not using CUDNN, only 1D or 2D Deconvolution is supported";
+ LOG(FATAL) << "Only 1D or 2D Deconvolution is natively supported. "
+ << ((MXNET_USE_MKLDNN || MXNET_USE_CUDNN)
+ ? "Fallback to native implementation (if occurred) is therefore "
+ "impossible for 3D Deconvolution."
+ : "");
}
CHECK_EQ(req[deconv::kOut], kWriteTo);
diff --git a/src/operator/nn/deconvolution.cc b/src/operator/nn/deconvolution.cc
index 35d17c5..30efd1f 100644
--- a/src/operator/nn/deconvolution.cc
+++ b/src/operator/nn/deconvolution.cc
@@ -42,9 +42,14 @@
const std::vector<NDArray>& outputs) {
const DeconvolutionParam& params = nnvm::get<DeconvolutionParam>(attrs.parsed);
if (SupportMKLDNNDeconv(params, inputs[0])) {
- MKLDNN_OPCHECK_INIT(false, outputs.size(), inputs, outputs);
- MKLDNNRun(MKLDNNDeconvolutionForward, attrs, ctx, inputs, req, outputs);
- MKLDNN_OPCHECK_RUN(DeconvolutionCompute<cpu>, attrs, ctx, inputs, req, outputs);
+ if (params.kernel.ndim() == 3) {
+ // we cannot check the output, as 3D deconvolution is not natively supported yet
+ MKLDNNRun(MKLDNNDeconvolutionForward, attrs, ctx, inputs, req, outputs);
+ } else {
+ MKLDNN_OPCHECK_INIT(false, outputs.size(), inputs, outputs);
+ MKLDNNRun(MKLDNNDeconvolutionForward, attrs, ctx, inputs, req, outputs);
+ MKLDNN_OPCHECK_RUN(DeconvolutionCompute<cpu>, attrs, ctx, inputs, req, outputs);
+ }
return;
}
FallBackCompute(DeconvolutionCompute<cpu>, attrs, ctx, inputs, req, outputs);
@@ -57,9 +62,14 @@
const std::vector<NDArray>& outputs) {
const DeconvolutionParam& params = nnvm::get<DeconvolutionParam>(attrs.parsed);
if (SupportMKLDNNDeconv(params, inputs[0])) {
- MKLDNN_OPCHECK_INIT(true, outputs.size(), inputs, outputs);
- MKLDNNRun(MKLDNNDeconvolutionBackward, attrs, ctx, inputs, req, outputs);
- MKLDNN_OPCHECK_RUN(DeconvolutionGradCompute<cpu>, attrs, ctx, inputs, req, outputs);
+ if (params.kernel.ndim() == 3) {
+ // we cannot check the output, as 3D deconvolution is not natively supported yet
+ MKLDNNRun(MKLDNNDeconvolutionBackward, attrs, ctx, inputs, req, outputs);
+ } else {
+ MKLDNN_OPCHECK_INIT(true, outputs.size(), inputs, outputs);
+ MKLDNNRun(MKLDNNDeconvolutionBackward, attrs, ctx, inputs, req, outputs);
+ MKLDNN_OPCHECK_RUN(DeconvolutionGradCompute<cpu>, attrs, ctx, inputs, req, outputs);
+ }
return;
}
FallBackCompute(DeconvolutionGradCompute<cpu>, attrs, ctx, inputs, req, outputs);
@@ -99,12 +109,12 @@
mxnet::ShapeVector *in_shape,
mxnet::ShapeVector *out_shape) {
const DeconvolutionParam& param_ = nnvm::get<DeconvolutionParam>(attrs.parsed);
-#if MXNET_USE_CUDNN == 0
+#if MXNET_USE_CUDNN == 0 && MXNET_USE_MKLDNN == 0
if (param_.kernel.ndim() > 2) {
- LOG(FATAL) << "If not using CUDNN, only 1D or 2D Deconvolution is supported";
+ LOG(FATAL) << "If not using CUDNN or MKLDNN, only 1D or 2D Deconvolution is supported";
return false;
}
-#endif // CUDNN
+#endif
using namespace mshadow;
if (!param_.no_bias) {
diff --git a/src/operator/nn/mkldnn/mkldnn_deconvolution.cc b/src/operator/nn/mkldnn/mkldnn_deconvolution.cc
index 7678567..2160815 100644
--- a/src/operator/nn/mkldnn/mkldnn_deconvolution.cc
+++ b/src/operator/nn/mkldnn/mkldnn_deconvolution.cc
@@ -29,7 +29,8 @@
namespace op {
bool SupportMKLDNNDeconv(const DeconvolutionParam ¶ms, const NDArray &input) {
- return params.kernel.ndim() == 2 && input.shape().ndim() == 4 &&
+ return params.kernel.ndim() >= 1 && params.kernel.ndim() <= 3 &&
+ input.shape().ndim() == (params.kernel.ndim() + 2) &&
(input.dtype() == mshadow::kFloat32 || input.dtype() == mshadow::kBfloat16);
}
@@ -322,10 +323,10 @@
strides(param.stride.ndim()),
padding(param.pad.ndim()),
dilates(param.dilate.ndim()) {
- // assuming only deconv2D is supported for now
CHECK_EQ(param.stride.ndim(), param.pad.ndim());
CHECK_EQ(param.stride.ndim(), param.dilate.ndim());
- CHECK_EQ(param.stride.ndim(), 2);
+ CHECK_GE(param.stride.ndim(), 1);
+ CHECK_LE(param.stride.ndim(), 3);
for (int i = 0; i < param.stride.ndim(); ++i) {
strides[i] = param.stride[i];
padding[i] = param.pad[i];
diff --git a/tests/python/mkl/test_mkldnn.py b/tests/python/mkl/test_mkldnn.py
index de0c249..061cc18 100644
--- a/tests/python/mkl/test_mkldnn.py
+++ b/tests/python/mkl/test_mkldnn.py
@@ -471,8 +471,8 @@
@with_seed()
def test_Deconvolution():
def check_Deconvolution_training(stype):
- for shape in [(3, 3, 10, 10)]: # testing only 2D for now
- data_tmp = np.random.randint(256, size=shape)
+ for shape in [(3, 3, 10), (3, 3, 10, 10), (3, 3, 10, 10, 10)]:
+ data_tmp = np.random.normal(-0.1, 1, size=shape)
data = mx.symbol.Variable('data', stype=stype)
if np.array(shape).shape[0] == 3:
@@ -481,6 +481,11 @@
elif np.array(shape).shape[0] == 4:
test = mx.symbol.Deconvolution(data=data, kernel=(3, 3), stride=(2, 2), num_filter=4)
weight_tmp = np.random.normal(-0.1, 0.1, size=(3, 4, 3, 3))
+ elif np.array(shape).shape[0] == 5 and stype == "default":
+ # Unable to test fallback to native implementation for non-default storage types
+ # as 3D deconvolution is not natively supported
+ test = mx.symbol.Deconvolution(data=data, kernel=(3,3,3), stride=(2,2,2), num_filter=4)
+ weight_tmp = np.random.normal(-0.1, 0.1, size=(3, 4, 3, 3, 3))
else:
return 0
bias_tmp = np.random.normal(0.1, 0.1, size=(4,))