This example implements Spectral Normalization for Generative Adversarial Networks based on CIFAR10 dataset.
Example runs and the results:
python train.py --use-gpu --data-path=data
python train.py --help
gives the following arguments:
optional arguments: -h, --help show this help message and exit --data-path DATA_PATH path of data. --batch-size BATCH_SIZE training batch size. default is 64. --epochs EPOCHS number of training epochs. default is 100. --lr LR learning rate. default is 0.0001. --lr-beta LR_BETA learning rate for the beta in margin based loss. default is 0.5. --use-gpu use gpu for training. --clip_gr CLIP_GR Clip the gradient by projecting onto the box. default is 10.0. --z-dim Z_DIM dimension of the latent z vector. default is 100.