| #!/usr/bin/env python3 |
| |
| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| # coding: utf-8 |
| # pylint: disable=arguments-differ |
| |
| # This test checks dynamic loading of custom library into MXNet |
| # and checks end to end compute of a simple 2D gemm custom op |
| |
| import mxnet as mx |
| import os |
| import time |
| |
| #load library |
| if (os.name=='posix'): |
| path = os.path.abspath('librelu_lib.so') |
| mx.library.load(path) |
| |
| a = mx.nd.array([[-2,-1],[1,2]], ctx=mx.cpu()) |
| b = mx.nd.array([[-2,-1],[1,2]], ctx=mx.gpu()) |
| |
| print("--------ndarray compute---------") |
| print(mx.nd.my_relu(a)) |
| print(mx.nd.my_relu(b)) |
| print(mx.nd.my_state_relu(a)) |
| print(mx.nd.my_state_relu(b)) |
| |
| print("--------symbolic compute--------") |
| c = mx.sym.Variable('c') |
| d = mx.sym.Variable('d') |
| e = mx.sym.my_relu(c) |
| base = mx.sym.relu(d) |
| #in_grad = [mx.nd.empty((2,2), ctx=mx.gpu())] |
| #in_grad_base = [mx.nd.empty((2,2), ctx=mx.gpu())] |
| out_grad = mx.nd.ones((2,2), ctx=mx.gpu()) |
| #exe = e.bind(ctx=mx.gpu(), args={'c':b}, args_grad=in_grad) |
| block = mx.gluon.nn.SymbolBlock(e,[c]) |
| #exe_base = base.bind(ctx=mx.gpu(), args={'d':b}, args_grad=in_grad_base) |
| block_base = mx.gluon.nn.SymbolBlock(base,[d]) |
| |
| # base |
| with mx.autograd.record(): |
| b_ = mx.nd.array([[-2,-1],[1,2]], ctx=mx.gpu()) |
| b_.attach_grad() |
| # foward |
| out_base = block_base(b_) |
| print(out_base) |
| print('+++++') |
| # backward |
| out_base.backward(out_grad) |
| print(b_.grad) |
| print("-------") |
| |
| # custom relu |
| with mx.autograd.record(): |
| b_ = mx.nd.array([[-2,-1],[1,2]], ctx=mx.gpu()) |
| b_.attach_grad() |
| # foward |
| out = block(b_) |
| print(out) |
| print('+++++') |
| # backward |
| out.backward(out_grad) |
| print(b_.grad) |
| print("-------") |
| |
| print("--------test ndarray with size of 1 million---------") |
| b = mx.nd.uniform(shape=(100,100,100), ctx=mx.gpu()) |
| mx.nd.waitall() |
| t1 = time.time() |
| r1 = mx.nd.my_relu(b) |
| mx.nd.waitall() |
| t2 = time.time() |
| r2 = mx.nd.relu(b) |
| mx.nd.waitall() |
| t3 = time.time() |
| print("Custom ReLU running time in ms:") |
| print((t2 - t1) * 1000) |
| print("Native ReLU running time in ms:") |
| print((t3 - t2) * 1000) |
| |
| print("--------test noisy relu identical sequence---------") |
| |
| a = mx.nd.ones(shape=(13,5), ctx=mx.cpu()) |
| b = mx.nd.ones(shape=(13,5), ctx=mx.gpu()) |
| |
| mx.random.seed(128, ctx=mx.cpu()) |
| print(mx.nd.my_noisy_relu(a)) |
| |
| mx.random.seed(128, ctx=mx.cpu()) |
| print(mx.nd.my_noisy_relu(a)) |
| |
| mx.random.seed(128, ctx=mx.gpu()) |
| print(mx.nd.my_noisy_relu(b)) |
| |
| mx.random.seed(128, ctx=mx.gpu()) |
| print(mx.nd.my_noisy_relu(b)) |