| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| using MXNet |
| |
| #-------------------------------------------------------------------------------- |
| # define lenet with stn layer |
| |
| |
| |
| # input |
| data = mx.Variable(:data) |
| |
| |
| # the localisation network in lenet-stn |
| # it will increase acc about more than 1%, when num-epoch >=15 |
| # The localization net just takes the data as input and must output a vector in R^n |
| loc_net = @mx.chain mx.Convolution(data, num_filter=10, kernel=(5, 5), stride=(2,2)) => |
| mx.Activation(act_type=:relu) => |
| mx.Pooling( kernel=(2, 2), stride=(2, 2), pool_type=:max) => |
| mx.Convolution( num_filter=10, kernel=(3, 3), stride=(2,2), pad=(1, 1)) => |
| mx.Activation(act_type=:relu) => |
| mx.Pooling( global_pool=true, kernel=(2, 2), pool_type=:avg) => |
| mx.Flatten() => |
| mx.FullyConnected(num_hidden=6, name=:stn_loc) |
| |
| data=mx.SpatialTransformer(data,loc_net, target_shape = (28,28), transform_type="affine", sampler_type="bilinear") |
| |
| # first conv |
| conv1 = @mx.chain mx.Convolution(data, kernel=(5,5), num_filter=20) => |
| mx.Activation(act_type=:tanh) => |
| mx.Pooling(pool_type=:max, kernel=(2,2), stride=(2,2)) |
| |
| # second conv |
| conv2 = @mx.chain mx.Convolution(conv1, kernel=(5,5), num_filter=50) => |
| mx.Activation(act_type=:tanh) => |
| mx.Pooling(pool_type=:max, kernel=(2,2), stride=(2,2)) |
| |
| # first fully-connected |
| fc1 = @mx.chain mx.Flatten(conv2) => |
| mx.FullyConnected(num_hidden=500) => |
| mx.Activation(act_type=:tanh) |
| |
| # second fully-connected |
| fc2 = mx.FullyConnected(fc1, num_hidden=10) |
| |
| # softmax loss |
| lenet = mx.SoftmaxOutput(fc2, name=:softmax) |
| |
| |
| #-------------------------------------------------------------------------------- |
| |
| # load data |
| batch_size = 100 |
| include("mnist-data.jl") |
| train_provider, eval_provider = get_mnist_providers(batch_size; flat=false) |
| |
| #-------------------------------------------------------------------------------- |
| # fit model |
| model = mx.FeedForward(lenet, context=mx.cpu()) |
| |
| # optimizer |
| optimizer = mx.ADAM(η=0.01, λ=0.00001) |
| |
| # fit parameters |
| initializer=mx.XavierInitializer(distribution = mx.xv_uniform, regularization = mx.xv_avg, magnitude = 1) |
| mx.fit(model, optimizer, train_provider, n_epoch=20, eval_data=eval_provider,initializer=initializer) |