blob: 754475bff9ad11de14746bb39a1c93e66339d3ab [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file histogram.cc
* \brief CPU implementation of histogram operator
*/
#include "./histogram-inl.h"
namespace mxnet {
namespace op {
struct ComputeBinKernel {
template<typename DType>
MSHADOW_XINLINE static void Map(int i, const DType* in_data, const DType* bin_bounds,
int* bin_indices, int bin_cnt, double min, double max) {
DType data = in_data[i];
int target = -1;
if (data >= min && data <= max) {
target = (data - min) * bin_cnt / (max - min);
target = mshadow_op::minimum::Map(bin_cnt - 1, target);
target -= (data < bin_bounds[target]) ? 1 : 0;
target += ((data >= bin_bounds[target + 1]) && (target != bin_cnt - 1)) ? 1 : 0;
}
bin_indices[i] = target;
}
template<typename DType>
MSHADOW_XINLINE static void Map(int i, const DType* in_data, int* bin_indices,
const DType* bin_bounds, int num_bins) {
DType data = in_data[i];
int target = -1;
if (data >= bin_bounds[0] && data <= bin_bounds[num_bins]) {
target = 0;
while ((data - bin_bounds[target]) >= 0) {
target += 1;
}
target = mshadow_op::minimum::Map(target - 1, num_bins - 1);
}
bin_indices[i] = target;
}
};
template<typename CType>
void ComputeHistogram(const int* bin_indices, CType* out_data, size_t input_size) {
for (size_t i = 0; i < input_size; ++i) {
int target = bin_indices[i];
if (target >= 0) {
out_data[target] += 1;
}
}
}
template<>
void HistogramForwardImpl<cpu>(const OpContext& ctx,
const TBlob& in_data,
const TBlob& bin_bounds,
const TBlob& out_data,
const TBlob& out_bins) {
using namespace mshadow;
using namespace mxnet_op;
mshadow::Stream<cpu> *s = ctx.get_stream<cpu>();
Tensor<cpu, 1, int> bin_indices =
ctx.requested[0].get_space_typed<cpu, 1, int>(Shape1(in_data.Size()), s);
const int bin_cnt = out_data.Size();
MSHADOW_TYPE_SWITCH(in_data.type_flag_, DType, {
Kernel<ComputeBinKernel, cpu>::Launch(
s, in_data.Size(), in_data.dptr<DType>(), bin_indices.dptr_, bin_bounds.dptr<DType>(),
bin_cnt);
Kernel<op_with_req<mshadow_op::identity, kWriteTo>, cpu>::Launch(
s, bin_bounds.Size(), out_bins.dptr<DType>(), bin_bounds.dptr<DType>());
});
MSHADOW_TYPE_SWITCH(out_data.type_flag_, CType, {
Kernel<set_zero, cpu>::Launch(s, bin_cnt, out_data.dptr<CType>());
ComputeHistogram(bin_indices.dptr_, out_data.dptr<CType>(), in_data.Size());
});
}
template<>
void HistogramForwardImpl<cpu>(const OpContext& ctx,
const TBlob& in_data,
const TBlob& out_data,
const TBlob& out_bins,
const int bin_cnt,
const double min,
const double max) {
using namespace mshadow;
using namespace mxnet_op;
mshadow::Stream<cpu> *s = ctx.get_stream<cpu>();
Tensor<cpu, 1, int> bin_indices =
ctx.requested[0].get_space_typed<cpu, 1, int>(Shape1(in_data.Size()), s);
MSHADOW_TYPE_SWITCH(in_data.type_flag_, DType, {
Kernel<FillBinBoundsKernel, cpu>::Launch(
s, bin_cnt+1, out_bins.dptr<DType>(), bin_cnt, min, max);
Kernel<ComputeBinKernel, cpu>::Launch(
s, in_data.Size(), in_data.dptr<DType>(), out_bins.dptr<DType>(), bin_indices.dptr_,
bin_cnt, min, max);
});
MSHADOW_TYPE_SWITCH(out_data.type_flag_, CType, {
Kernel<set_zero, cpu>::Launch(s, bin_cnt, out_data.dptr<CType>());
ComputeHistogram(bin_indices.dptr_, out_data.dptr<CType>(), in_data.Size());
});
}
DMLC_REGISTER_PARAMETER(HistogramParam);
NNVM_REGISTER_OP(_histogram)
.describe(R"code(This operators implements the histogram function.
Example::
x = [[0, 1], [2, 2], [3, 4]]
histo, bin_edges = histogram(data=x, bin_bounds=[], bin_cnt=5, range=(0,5))
histo = [1, 1, 2, 1, 1]
bin_edges = [0., 1., 2., 3., 4.]
histo, bin_edges = histogram(data=x, bin_bounds=[0., 2.1, 3.])
histo = [4, 1]
)code" ADD_FILELINE)
.set_attr_parser(ParamParser<HistogramParam>)
.set_num_inputs([](const NodeAttrs& attrs) {
const HistogramParam& params = nnvm::get<HistogramParam>(attrs.parsed);
return params.bin_cnt.has_value() ? 1 : 2;
})
.set_num_outputs(2)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
const HistogramParam& params = nnvm::get<HistogramParam>(attrs.parsed);
return params.bin_cnt.has_value() ?
std::vector<std::string>{"data"} :
std::vector<std::string>{"data", "bins"};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<mxnet::FInferShape>("FInferShape", HistogramOpShape)
.set_attr<nnvm::FInferType>("FInferType", HistogramOpType)
.set_attr<FCompute>("FCompute<cpu>", HistogramOpForward<cpu>)
.add_argument("data", "NDArray-or-Symbol", "Input ndarray")
.add_argument("bins", "NDArray-or-Symbol", "Input ndarray")
.add_arguments(HistogramParam::__FIELDS__());
} // namespace op
} // namespace mxnet