blob: 70b626dbb9b7b0737ed01754510a4326eb69b9a5 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2015 by Contributors
* \file ndarray_op.h
* \brief the real execution functions of ndarray operations
*/
#ifndef MXNET_NDARRAY_NDARRAY_FUNCTION_H_
#define MXNET_NDARRAY_NDARRAY_FUNCTION_H_
#include <dmlc/logging.h>
#include <mshadow/tensor.h>
#include <mxnet/base.h>
#include <mxnet/resource.h>
#include <mxnet/ndarray.h>
#include <vector>
#include "../operator/mshadow_op.h"
#include "../operator/tensor/init_op.h"
namespace mxnet {
/*! \brief namespace to support all possible Ndarray operator */
namespace ndarray {
struct BinaryBase {
inline static mxnet::TShape GetShape(const mxnet::TShape &lshape, const mxnet::TShape &rshape) {
CHECK(lshape == rshape) << "operands shape mismatch";
CHECK(lshape.ndim() != 0) << "source operand have zero dimension shape";
return lshape;
}
};
// operators
struct Plus : public BinaryBase, public mshadow::op::plus {
typedef mshadow::op::plus mshadow_op;
};
struct Minus : public BinaryBase, public mshadow::op::minus {
typedef mshadow::op::minus mshadow_op;
};
struct Mul : public BinaryBase, public mshadow::op::mul {
typedef mshadow::op::mul mshadow_op;
};
struct Div : public BinaryBase, public mshadow::op::div {
typedef mshadow::op::div mshadow_op;
};
struct Mod : public BinaryBase {
typedef op::mshadow_op::mod mshadow_op;
};
struct ClipMin : public BinaryBase {
struct mshadow_op {
template<typename DType>
MSHADOW_XINLINE static DType Map(DType a, DType b) {
if (a < b) {
return b;
} else {
return a;
}
}
};
};
struct ClipMax : public BinaryBase {
struct mshadow_op {
template<typename DType>
MSHADOW_XINLINE static DType Map(DType a, DType b) {
if (a > b) {
return b;
} else {
return a;
}
}
};
};
struct OneHotEncode {
inline static mxnet::TShape GetShape(const mxnet::TShape &index, const mxnet::TShape &proptype) {
CHECK(index.ndim() == 1 && proptype.ndim() == 2) << "OneHotEncode only support 1d index.";
CHECK_EQ(index[0], proptype[0]) << "OneHotEncode shape inconsistent";
return proptype;
}
};
struct MatChooseRowElem {
inline static mxnet::TShape GetShape(const mxnet::TShape &lshape, const mxnet::TShape &rshape) {
CHECK(lshape.ndim() == 2 && rshape.ndim() == 1)
<< "choose_row_element only support 2D Matrix and 1D index";
CHECK_EQ(lshape[0], rshape[0]) << "choose_row_element index and matrix shape mismatch";
return rshape;
}
};
struct MatFillRowElem {
inline static mxnet::TShape GetShape(const mxnet::TShape &lshape,
const mxnet::TShape &mshape,
const mxnet::TShape &rshape) {
CHECK(lshape.ndim() == 2 && mshape.ndim() == 1 && rshape.ndim() == 1)
<< "fill_row_element only support 2D Matrix, 1D value and 1D index";
CHECK((lshape[0] == mshape[0]) && (mshape[0] == rshape[0]))
<< "choose_row_element index vector, value vector and matrix shape mismatch";
return lshape;
}
};
// type holder for random number generators
struct UniformDistribution {};
struct GaussianDistribution {};
struct GammaDistribution {};
struct ExponentialDistribution {};
struct PoissonDistribution {};
struct NegBinomialDistribution {};
struct GenNegBinomialDistribution {};
template<typename Device>
void EvalClip(const TBlob &src, const real_t &a_min, const real_t &a_max,
TBlob *ret, RunContext ctx);
template<typename Device, typename OP>
void Eval(const TBlob &lhs, const TBlob &mhs, const TBlob &rhs, TBlob *ret, RunContext ctx);
template<typename Device, typename OP>
void Eval(const TBlob &lhs, const TBlob &rhs, TBlob *ret, RunContext ctx);
template<typename Device, typename OP>
void Eval(const TBlob &src, TBlob *ret, RunContext ctx);
template<typename Device, typename OP, bool reverse>
void Eval(const TBlob &lhs, const real_t &rhs, TBlob *ret, RunContext ctx);
template<typename Device>
void Eval(const real_t &rhs, TBlob *ret, RunContext ctx);
template<typename Device, typename Distribution>
void EvalRandom(const real_t &a,
const real_t &b,
const Resource &resource,
TBlob *ret, RunContext ctx);
// copy function when only cpu is involved
template<typename DeviceFrom, typename DeviceTo>
void Copy(const TBlob &from, TBlob *to,
Context from_ctx, Context to_ctx,
RunContext ctx);
template<typename Device>
void ElementwiseSum(const std::vector<TBlob> source,
TBlob *out,
RunContext ctx);
/*!
* \brief Interface for parallel impl of elemwise sum for sparse matrices
*/
template<typename xpu>
void ElementwiseSum(mshadow::Stream<xpu>* s,
const Resource& rsc,
const std::vector<NDArray>& nds,
NDArray* out);
/*!
* \brief Set a row_sparse NDArray with val
* \param s - The device stream
* \param val - The value to be set
* \param dst - NDArray which is to be set to val
*/
template<typename xpu>
void SetValueRspImpl(mshadow::Stream<xpu> *s,
const real_t val, NDArray *dst) {
CHECK_EQ(dst->storage_type(), kRowSparseStorage);
using namespace mxnet::op;
nnvm::dim_t nnr = dst->shape()[0];
dst->CheckAndAlloc({mshadow::Shape1(nnr)});
MSHADOW_IDX_TYPE_SWITCH(dst->aux_type(rowsparse::kIdx), IType, {
IType* idx = dst->aux_data(rowsparse::kIdx).dptr<IType>();
mxnet_op::Kernel<PopulateFullIdxRspKernel, xpu>::Launch(s, nnr, idx);
});
Fill<false>(s, dst->data(), kWriteTo, val);
}
template<typename xpu>
void Eval(mshadow::Stream<xpu> *s,
const real_t val, const NDArray& dst);
// broadcasting
template <typename Device>
void EvalBroadcast(TBlob const& src, TBlob* ret, int size, RunContext ctx);
template <typename OP, typename xpu>
void BinaryOpKernelImpl(mshadow::Stream<xpu> *s, const TBlob& lhs,
const TBlob& rhs, TBlob *out);
} // namespace ndarray
} // namespace mxnet
#endif // MXNET_NDARRAY_NDARRAY_FUNCTION_H_