tree: 0358edb73b0b7ac70758d0a08646be42742e6133 [path history] [tgz]
  1. convert_data.py
  2. README.md
  3. vaegan_mxnet.py
example/vae-gan/README.md

VAE-GAN in MXNet

Experiements

Prerequisites

  • Opencv
  • Python packages required: scipy, scikit-learn and Pillow, opencv python package

Environment Tested On

Deep Learning AMI (Ubuntu) - 2.0, p2.8xlarge

Usage

If you want to train and test with the default options do the following:

  1. Download the default dataset and convert from matlab file format to png file format
python convert_data.py
  1. Train on the downloaded dataset and store the encoder model and generator model params.
python vaegan_mxnet.py --train
  1. Test on the downloaded dataset
python vaegan_mxnet.py --test --testing_data_path /home/ubuntu/datasets/caltech101/test_data
  • Using existing models:
python vaegan_mxnet.py --test --testing_data_path [your dataset image path] --pretrained_encoder_path [pretrained encoder model path] --pretrained_generator_path [pretrained generator model path] [options]
  • Train a new model:
python vaegan_mxnet.py --train --training_data_path [your dataset image path] [options]
  • Training on the CPU:
python vaegan_mxnet.py --train --use_cpu --training_data_path [your dataset image path] [options]