Implementation of Autoencoding beyond pixels using a learned similarity metric, based on the Tensorflow implementation: https://github.com/JeremyCCHsu/tf-vaegan
Please refer to their official Github for details: Autoencoding Beyond Pixels
As the name indicates, VAE-GAN replaces GAN's generator with a variational auto-encoder, resulting in a model with both inference and generation components.
Deep Learning AMI (Ubuntu) - 2.0, p2.8xlarge
If you want to train and test with the default options do the following:
python convert_data.py
python vaegan_mxnet.py --train
python vaegan_mxnet.py --test --testing_data_path /home/ubuntu/datasets/caltech101/test_data
python vaegan_mxnet.py --test --testing_data_path [your dataset image path] --pretrained_encoder_path [pretrained encoder model path] --pretrained_generator_path [pretrained generator model path] [options]
python vaegan_mxnet.py --train --training_data_path [your dataset image path] [options]
python vaegan_mxnet.py --train --use_cpu --training_data_path [your dataset image path] [options]