This repo provides MXNet Implementation of Neural Style Transfer and MSG-Net.
Tabe of content
A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.
Download the images
python download_images.py
Neural style transfer
python main.py optim --content-image images/content/venice-boat.jpg --style-image images/styles/candy.jpg
--content-image: path to content image.--style-image: path to style image.--output-image: path for saving the output image.--content-size: the content image size to test on.--style-size: the style image size to test on.--cuda: set it to 1 for running on GPU, 0 for CPU.
python download_images.py python models/download_model.py
python main.py eval --content-image images/content/venice-boat.jpg --style-image images/styles/candy.jpg --model models/21styles.params --content-size 1024
If you don't have a GPU, simply set --cuda=0. For a different style, set --style-image path/to/style. If you would to stylize your own photo, change the --content-image path/to/your/photo. More options:
--content-image: path to content image you want to stylize.--style-image: path to style image (typically covered during the training).--model: path to the pre-trained model to be used for stylizing the image.--output-image: path for saving the output image.--content-size: the content image size to test on.--cuda: set it to 1 for running on GPU, 0 for CPU.
python download_images.py python dataset/download_dataset.py
python main.py train --epochs 4
--style-folder path/to/your/styles. More options:--style-folder: path to the folder style images.--vgg-model-dir: path to folder where the vgg model will be downloaded.--save-model-dir: path to folder where trained model will be saved.--cuda: set it to 1 for running on GPU, 0 for CPU.The code is mainly modified from PyTorch-Style-Transfer.