| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * \file executor.h |
| * \brief executor definition |
| * \author Chuntao Hong, Zhang Chen |
| */ |
| |
| #ifndef MXNET_CPP_EXECUTOR_H_ |
| #define MXNET_CPP_EXECUTOR_H_ |
| |
| #include <vector> |
| #include <map> |
| #include <set> |
| #include <string> |
| #include <algorithm> |
| #include "mxnet-cpp/base.h" |
| #include "mxnet-cpp/symbol.h" |
| |
| namespace mxnet { |
| namespace cpp { |
| |
| class Optimizer; |
| |
| /*! |
| * \brief Executor interface |
| */ |
| class Executor { |
| public: |
| Executor(const Symbol& symbol, |
| Context context, |
| const std::vector<NDArray>& arg_arrays, |
| const std::vector<NDArray>& grad_arrays, |
| const std::vector<OpReqType>& grad_reqs, |
| const std::vector<NDArray>& aux_arrays, |
| const std::map<std::string, Context>& group_to_ctx = std::map<std::string, Context>(), |
| Executor* shared_exec = nullptr); |
| explicit Executor(const CachedOpHandle& h) { |
| handle_ = h; |
| } |
| /*! |
| * \brief Perform a Forward operation of Operator |
| * After this operation, user can get the result by using function head. |
| */ |
| void Forward(bool is_train) { |
| std::vector<NDArrayHandle> arg_handles; |
| for (const auto& array : combined_arrays) { |
| arg_handles.push_back(array.GetHandle()); |
| } |
| int prev_is_record = 0; |
| int prev_train_mode = 0; |
| CHECK_EQ(MXAutogradSetIsRecording(1, &prev_is_record), 0); |
| if (is_train == true) { |
| CHECK_EQ(MXAutogradSetIsTraining(1, &prev_train_mode), 0); |
| } |
| std::vector<NDArrayHandle> output_handles; |
| std::transform( |
| outputs.begin(), outputs.end(), std::back_inserter(output_handles), [](NDArray& a) { |
| return a.GetHandle(); |
| }); |
| int out_size = 0; |
| NDArrayHandle* out_array = nullptr; |
| CHECK_EQ(MXInvokeCachedOp(handle_, |
| arg_handles.size(), |
| arg_handles.data(), |
| device_type, |
| device_id, |
| &out_size, |
| &out_array, |
| nullptr), |
| 0); |
| outputs.clear(); |
| outputs.reserve(out_size); |
| for (mx_uint i = 0; i < out_size; ++i) { |
| outputs.push_back(NDArray(out_array[i])); |
| } |
| int cur_train_mode = prev_train_mode; |
| int cur_is_record = prev_is_record; |
| if (is_train == true) { |
| CHECK_EQ(MXAutogradSetIsTraining(cur_train_mode, &prev_train_mode), 0); |
| } |
| CHECK_EQ(MXAutogradSetIsRecording(cur_is_record, &prev_is_record), 0); |
| } |
| /*! |
| * \brief Perform a Backward operation of the Operator. |
| * This must be called after Forward. |
| * After this operation, NDArrays specified by grad_in_args_store will be |
| *updated accordingly. |
| * User is allowed to pass in an empty Array if the head node is |
| * loss function and head gradeitn is not needed. |
| * |
| * \param head_grads the gradient of head nodes to be backproped. |
| */ |
| void Backward(const std::vector<NDArray>& head_grads = std::vector<NDArray>()) { |
| if (require_grad == true) { |
| if (outputs.size() == 0) { |
| Forward(false); |
| } |
| std::vector<NDArrayHandle> out_handles; |
| for (const auto& array : outputs) { |
| out_handles.push_back(array.GetHandle()); |
| } |
| std::vector<NDArrayHandle> head_grads_; |
| for (auto d : head_grads) { |
| head_grads_.push_back(d.GetHandle()); |
| } |
| if (head_grads_.size() > 0) { |
| CHECK_EQ(MXAutogradBackwardEx(out_handles.size(), |
| out_handles.data(), |
| head_grads_.data(), |
| 0, |
| nullptr, |
| 0, |
| 0, |
| 1, |
| nullptr, |
| nullptr), |
| 0); |
| } else { |
| CHECK_EQ(MXAutogradBackwardEx(out_handles.size(), |
| out_handles.data(), |
| nullptr, |
| 0, |
| nullptr, |
| 0, |
| 0, |
| 1, |
| nullptr, |
| nullptr), |
| 0); |
| } |
| grad_arrays.clear(); |
| grad_arrays.reserve(arg_arrays.size()); |
| for (const auto& array : arg_arrays) { |
| NDArrayHandle grad; |
| CHECK_EQ(MXNDArrayGetGrad(array.GetHandle(), &grad), 0); |
| grad_arrays.push_back(NDArray(grad)); |
| } |
| } |
| } |
| // TODO(zhangchen-qinyinghua) |
| // To implement reshape function |
| void Reshape(); |
| /*! |
| * \brief destructor, free the handle |
| */ |
| ~Executor() { |
| MXFreeCachedOp(handle_); |
| } |
| std::vector<NDArray> arg_arrays; |
| std::vector<NDArray> grad_arrays; |
| std::vector<NDArray> aux_arrays; |
| std::vector<NDArray> combined_arrays; |
| int device_type; |
| int device_id; |
| bool require_grad; |
| /*! |
| * \brief arrays store the outputs of forward |
| */ |
| std::vector<NDArray> outputs; |
| std::map<std::string, NDArray> arg_dict() { |
| return GetDict(symbol_.ListArguments(), arg_arrays); |
| } |
| std::map<std::string, NDArray> grad_dict() { |
| return GetDict(symbol_.ListArguments(), grad_arrays); |
| } |
| std::map<std::string, NDArray> aux_dict() { |
| return GetDict(symbol_.ListAuxiliaryStates(), aux_arrays); |
| } |
| |
| private: |
| Executor(const Executor& e); |
| Executor& operator=(const Executor& e); |
| CachedOpHandle handle_; |
| Symbol symbol_; |
| std::map<std::string, NDArray> GetDict(const std::vector<std::string>& names, |
| const std::vector<NDArray>& arrays) { |
| std::map<std::string, NDArray> ret; |
| std::set<std::string> name_set; |
| for (const auto& s : names) { |
| CHECK(name_set.find(s) == name_set.end()) << "Duplicate names detected, " << s; |
| name_set.insert(s); |
| } |
| CHECK_EQ(name_set.size(), arrays.size()) << "names size not equal to arrays size"; |
| for (size_t i = 0; i < names.size(); ++i) { |
| ret[names[i]] = arrays[i]; |
| } |
| return ret; |
| } |
| }; |
| } // namespace cpp |
| } // namespace mxnet |
| #endif // MXNET_CPP_EXECUTOR_H_ |