| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| # pylint: skip-file |
| import mxnet as mx |
| import numpy as np |
| import os, sys |
| import pickle as pickle |
| import logging |
| from mxnet.test_utils import get_mnist_ubyte |
| |
| # symbol net |
| batch_size = 100 |
| data = mx.symbol.Variable('data') |
| fc1 = mx.symbol.FullyConnected(data, name='fc1', num_hidden=128) |
| act1 = mx.symbol.Activation(fc1, name='relu1', act_type="relu") |
| fc2 = mx.symbol.FullyConnected(act1, name = 'fc2', num_hidden = 64) |
| act2 = mx.symbol.Activation(fc2, name='relu2', act_type="relu") |
| fc3 = mx.symbol.FullyConnected(act2, name='fc3', num_hidden=10) |
| softmax = mx.symbol.SoftmaxOutput(fc3, name = 'sm') |
| |
| def accuracy(label, pred): |
| py = np.argmax(pred, axis=1) |
| return np.sum(py == label) / float(label.size) |
| |
| num_epoch = 4 |
| prefix = './mlp' |
| |
| #check data |
| get_mnist_ubyte() |
| |
| train_dataiter = mx.io.MNISTIter( |
| image="data/train-images-idx3-ubyte", |
| label="data/train-labels-idx1-ubyte", |
| data_shape=(784,), |
| label_name='sm_label', |
| batch_size=batch_size, shuffle=True, flat=True, silent=False, seed=10) |
| val_dataiter = mx.io.MNISTIter( |
| image="data/t10k-images-idx3-ubyte", |
| label="data/t10k-labels-idx1-ubyte", |
| data_shape=(784,), |
| label_name='sm_label', |
| batch_size=batch_size, shuffle=True, flat=True, silent=False) |
| |
| def test_mlp(): |
| # print logging by default |
| logging.basicConfig(level=logging.DEBUG) |
| |
| model = mx.model.FeedForward.create( |
| softmax, |
| X=train_dataiter, |
| eval_data=val_dataiter, |
| eval_metric=mx.metric.np(accuracy), |
| epoch_end_callback=mx.callback.do_checkpoint(prefix), |
| ctx=[mx.cpu(i) for i in range(2)], |
| num_epoch=num_epoch, |
| learning_rate=0.1, wd=0.0004, |
| momentum=0.9) |
| |
| logging.info('Finish traning...') |
| prob = model.predict(val_dataiter) |
| logging.info('Finish predict...') |
| val_dataiter.reset() |
| y = np.concatenate([batch.label[0].asnumpy() for batch in val_dataiter]).astype('int') |
| py = np.argmax(prob, axis=1) |
| acc1 = float(np.sum(py == y)) / len(y) |
| logging.info('final accuracy = %f', acc1) |
| assert(acc1 > 0.95) |
| |
| # predict internal featuremaps |
| internals = softmax.get_internals() |
| fc2 = internals['fc2_output'] |
| mfeat = mx.model.FeedForward(symbol=fc2, |
| arg_params=model.arg_params, |
| aux_params=model.aux_params, |
| allow_extra_params=True) |
| feat = mfeat.predict(val_dataiter) |
| assert feat.shape == (10000, 64) |
| # pickle the model |
| smodel = pickle.dumps(model) |
| model2 = pickle.loads(smodel) |
| prob2 = model2.predict(val_dataiter) |
| assert np.sum(np.abs(prob - prob2)) == 0 |
| |
| # load model from checkpoint |
| model3 = mx.model.FeedForward.load(prefix, num_epoch) |
| prob3 = model3.predict(val_dataiter) |
| assert np.sum(np.abs(prob - prob3)) == 0 |
| |
| # save model explicitly |
| model.save(prefix, 128) |
| model4 = mx.model.FeedForward.load(prefix, 128) |
| prob4 = model4.predict(val_dataiter) |
| assert np.sum(np.abs(prob - prob4)) == 0 |
| |
| for i in range(num_epoch): |
| os.remove('%s-%04d.params' % (prefix, i + 1)) |
| os.remove('%s-symbol.json' % prefix) |
| os.remove('%s-0128.params' % prefix) |
| |
| |
| if __name__ == "__main__": |
| test_mlp() |